in inference/model.py [0:0]
def __init__(self, args: ModelArgs):
"""
Initializes the Transformer model.
Args:
args (ModelArgs): Model arguments containing transformer parameters.
"""
global world_size, rank
world_size = dist.get_world_size() if dist.is_initialized() else 1
rank = dist.get_rank() if dist.is_initialized() else 0
Linear.dtype = torch.float8_e4m3fn if args.dtype == "fp8" else torch.bfloat16
super().__init__()
self.max_seq_len = args.max_seq_len
self.embed = ParallelEmbedding(args.vocab_size, args.dim)
self.layers = torch.nn.ModuleList()
for layer_id in range(args.n_layers):
self.layers.append(Block(layer_id, args))
self.norm = RMSNorm(args.dim)
self.head = ColumnParallelLinear(args.dim, args.vocab_size, dtype=torch.get_default_dtype())
self.register_buffer("freqs_cis", precompute_freqs_cis(args), persistent=False)