def _set_cos_sin_cache()

in deepseek_vl2/models/modeling_deepseek.py [0:0]


    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len

        if seq_len > self.max_position_embeddings:
            base = self.base * (
                (self.scaling_factor * seq_len / self.max_position_embeddings)
                - (self.scaling_factor - 1)
            ) ** (self.dim / (self.dim - 2))
            inv_freq = 1.0 / (
                base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
            )
            self.register_buffer("inv_freq", inv_freq, persistent=False)

        t = torch.arange(
            self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
        )

        freqs = torch.outer(t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)