def guidance_eval()

in threestudio/models/guidance/zero123_guidance.py [0:0]


    def guidance_eval(self, cond, t_orig, latents_noisy, noise_pred):
        # use only 50 timesteps, and find nearest of those to t
        self.scheduler.set_timesteps(50)
        self.scheduler.timesteps_gpu = self.scheduler.timesteps.to(self.device)
        bs = (
            min(self.cfg.max_items_eval, latents_noisy.shape[0])
            if self.cfg.max_items_eval > 0
            else latents_noisy.shape[0]
        )  # batch size
        large_enough_idxs = self.scheduler.timesteps_gpu.expand([bs, -1]) > t_orig[
            :bs
        ].unsqueeze(
            -1
        )  # sized [bs,50] > [bs,1]
        idxs = torch.min(large_enough_idxs, dim=1)[1]
        t = self.scheduler.timesteps_gpu[idxs]

        fracs = list((t / self.scheduler.config.num_train_timesteps).cpu().numpy())
        imgs_noisy = self.decode_latents(latents_noisy[:bs]).permute(0, 2, 3, 1)

        # get prev latent
        latents_1step = []
        pred_1orig = []
        for b in range(bs):
            step_output = self.scheduler.step(
                noise_pred[b : b + 1], t[b], latents_noisy[b : b + 1], eta=1
            )
            latents_1step.append(step_output["prev_sample"])
            pred_1orig.append(step_output["pred_original_sample"])
        latents_1step = torch.cat(latents_1step)
        pred_1orig = torch.cat(pred_1orig)
        imgs_1step = self.decode_latents(latents_1step).permute(0, 2, 3, 1)
        imgs_1orig = self.decode_latents(pred_1orig).permute(0, 2, 3, 1)

        latents_final = []
        for b, i in enumerate(idxs):
            latents = latents_1step[b : b + 1]
            c = {
                "c_crossattn": [cond["c_crossattn"][0][[b, b + len(idxs)], ...]],
                "c_concat": [cond["c_concat"][0][[b, b + len(idxs)], ...]],
            }
            for t in tqdm(self.scheduler.timesteps[i + 1 :], leave=False):
                # pred noise
                x_in = torch.cat([latents] * 2)
                t_in = torch.cat([t.reshape(1)] * 2).to(self.device)
                noise_pred = self.model.apply_model(x_in, t_in, c)
                # perform guidance
                noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + self.cfg.guidance_scale * (
                    noise_pred_cond - noise_pred_uncond
                )
                # get prev latent
                latents = self.scheduler.step(noise_pred, t, latents, eta=1)[
                    "prev_sample"
                ]
            latents_final.append(latents)

        latents_final = torch.cat(latents_final)
        imgs_final = self.decode_latents(latents_final).permute(0, 2, 3, 1)

        return {
            "bs": bs,
            "noise_levels": fracs,
            "imgs_noisy": imgs_noisy,
            "imgs_1step": imgs_1step,
            "imgs_1orig": imgs_1orig,
            "imgs_final": imgs_final,
        }