def __init__()

in threestudio/utils/GAN/discriminator.py [0:0]


    def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False):
        """Construct a PatchGAN discriminator
        Parameters:
            input_nc (int)  -- the number of channels in input images
            ndf (int)       -- the number of filters in the last conv layer
            n_layers (int)  -- the number of conv layers in the discriminator
            norm_layer      -- normalization layer
        """
        super(NLayerDiscriminator, self).__init__()
        if not use_actnorm:
            norm_layer = nn.BatchNorm2d
        else:
            norm_layer = ActNorm
        if (
            type(norm_layer) == functools.partial
        ):  # no need to use bias as BatchNorm2d has affine parameters
            use_bias = norm_layer.func != nn.BatchNorm2d
        else:
            use_bias = norm_layer != nn.BatchNorm2d

        kw = 4
        padw = 1
        sequence = [
            nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
            nn.LeakyReLU(0.2, True),
        ]
        nf_mult = 1
        nf_mult_prev = 1
        for n in range(1, n_layers):  # gradually increase the number of filters
            nf_mult_prev = nf_mult
            nf_mult = min(2**n, 8)
            sequence += [
                nn.Conv2d(
                    ndf * nf_mult_prev,
                    ndf * nf_mult,
                    kernel_size=kw,
                    stride=2,
                    padding=padw,
                    bias=use_bias,
                ),
                norm_layer(ndf * nf_mult),
                nn.LeakyReLU(0.2, True),
            ]

        nf_mult_prev = nf_mult
        nf_mult = min(2**n_layers, 8)
        sequence += [
            nn.Conv2d(
                ndf * nf_mult_prev,
                ndf * nf_mult,
                kernel_size=kw,
                stride=1,
                padding=padw,
                bias=use_bias,
            ),
            norm_layer(ndf * nf_mult),
            nn.LeakyReLU(0.2, True),
        ]

        sequence += [
            nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)
        ]  # output 1 channel prediction map
        self.main = nn.Sequential(*sequence)