in threestudio/models/guidance/controlnet_guidance.py [0:0]
def configure(self) -> None:
threestudio.info(f"Loading ControlNet ...")
controlnet_name_or_path: str
if self.cfg.control_type in ("normal", "input_normal"):
controlnet_name_or_path = "lllyasviel/control_v11p_sd15_normalbae"
elif self.cfg.control_type == "canny":
controlnet_name_or_path = "lllyasviel/control_v11p_sd15_canny"
self.weights_dtype = (
torch.float16 if self.cfg.half_precision_weights else torch.float32
)
pipe_kwargs = {
"safety_checker": None,
"feature_extractor": None,
"requires_safety_checker": False,
"torch_dtype": self.weights_dtype,
"cache_dir": self.cfg.cache_dir,
}
controlnet = ControlNetModel.from_pretrained(
controlnet_name_or_path,
torch_dtype=self.weights_dtype,
cache_dir=self.cfg.cache_dir,
)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
self.cfg.pretrained_model_name_or_path, controlnet=controlnet, **pipe_kwargs
).to(self.device)
self.scheduler = DDIMScheduler.from_pretrained(
self.cfg.ddim_scheduler_name_or_path,
subfolder="scheduler",
torch_dtype=self.weights_dtype,
cache_dir=self.cfg.cache_dir,
)
self.scheduler.set_timesteps(self.cfg.diffusion_steps)
if self.cfg.enable_memory_efficient_attention:
if parse_version(torch.__version__) >= parse_version("2"):
threestudio.info(
"PyTorch2.0 uses memory efficient attention by default."
)
elif not is_xformers_available():
threestudio.warn(
"xformers is not available, memory efficient attention is not enabled."
)
else:
self.pipe.enable_xformers_memory_efficient_attention()
if self.cfg.enable_sequential_cpu_offload:
self.pipe.enable_sequential_cpu_offload()
if self.cfg.enable_attention_slicing:
self.pipe.enable_attention_slicing(1)
if self.cfg.enable_channels_last_format:
self.pipe.unet.to(memory_format=torch.channels_last)
# Create model
self.vae = self.pipe.vae.eval()
self.unet = self.pipe.unet.eval()
self.controlnet = self.pipe.controlnet.eval()
if self.cfg.control_type == "normal":
self.preprocessor = NormalBaeDetector.from_pretrained(
"lllyasviel/Annotators"
)
self.preprocessor.model.to(self.device)
elif self.cfg.control_type == "canny":
self.preprocessor = CannyDetector()
for p in self.vae.parameters():
p.requires_grad_(False)
for p in self.unet.parameters():
p.requires_grad_(False)
self.num_train_timesteps = self.scheduler.config.num_train_timesteps
self.set_min_max_steps() # set to default value
self.alphas: Float[Tensor, "..."] = self.scheduler.alphas_cumprod.to(
self.device
)
self.grad_clip_val: Optional[float] = None
if self.cfg.use_du:
if self.cfg.cache_du:
self.edit_frames = {}
self.perceptual_loss = PerceptualLoss().eval().to(self.device)
threestudio.info(f"Loaded ControlNet!")