def configure()

in threestudio/models/guidance/stable_diffusion_guidance.py [0:0]


    def configure(self) -> None:
        threestudio.info(f"Loading Stable Diffusion ...")

        self.weights_dtype = (
            torch.float16 if self.cfg.half_precision_weights else torch.float32
        )

        pipe_kwargs = {
            "tokenizer": None,
            "safety_checker": None,
            "feature_extractor": None,
            "requires_safety_checker": False,
            "torch_dtype": self.weights_dtype,
            "cache_dir": self.cfg.cache_dir,
            "local_files_only": self.cfg.local_files_only
        }
        self.pipe = StableDiffusionPipeline.from_pretrained(
            self.cfg.pretrained_model_name_or_path,
            **pipe_kwargs,
        ).to(self.device)

        if self.cfg.enable_memory_efficient_attention:
            if parse_version(torch.__version__) >= parse_version("2"):
                threestudio.info(
                    "PyTorch2.0 uses memory efficient attention by default."
                )
            elif not is_xformers_available():
                threestudio.warn(
                    "xformers is not available, memory efficient attention is not enabled."
                )
            else:
                self.pipe.enable_xformers_memory_efficient_attention()

        if self.cfg.enable_sequential_cpu_offload:
            self.pipe.enable_sequential_cpu_offload()

        if self.cfg.enable_attention_slicing:
            self.pipe.enable_attention_slicing(1)

        if self.cfg.enable_channels_last_format:
            self.pipe.unet.to(memory_format=torch.channels_last)

        del self.pipe.text_encoder
        cleanup()

        # Create model
        self.vae = self.pipe.vae.eval()
        self.unet = self.pipe.unet.eval()

        for p in self.vae.parameters():
            p.requires_grad_(False)
        for p in self.unet.parameters():
            p.requires_grad_(False)

        if self.cfg.token_merging:
            import tomesd

            tomesd.apply_patch(self.unet, **self.cfg.token_merging_params)

        if self.cfg.use_sjc:
            # score jacobian chaining use DDPM
            self.scheduler = DDPMScheduler.from_pretrained(
                self.cfg.pretrained_model_name_or_path,
                subfolder="scheduler",
                torch_dtype=self.weights_dtype,
                beta_start=0.00085,
                beta_end=0.0120,
                beta_schedule="scaled_linear",
                cache_dir=self.cfg.cache_dir,
            )
        else:
            self.scheduler = DDIMScheduler.from_pretrained(
                self.cfg.pretrained_model_name_or_path,
                subfolder="scheduler",
                torch_dtype=self.weights_dtype,
                cache_dir=self.cfg.cache_dir,
                local_files_only=self.cfg.local_files_only,
            )

        self.num_train_timesteps = self.scheduler.config.num_train_timesteps
        self.set_min_max_steps()  # set to default value
        if self.cfg.time_prior is not None:
            m1, m2, s1, s2 = self.cfg.time_prior
            weights = torch.cat(
                (
                    torch.exp(
                        -((torch.arange(self.num_train_timesteps, m1, -1) - m1) ** 2)
                        / (2 * s1**2)
                    ),
                    torch.ones(m1 - m2 + 1),
                    torch.exp(
                        -((torch.arange(m2 - 1, 0, -1) - m2) ** 2) / (2 * s2**2)
                    ),
                )
            )
            weights = weights / torch.sum(weights)
            self.time_prior_acc_weights = torch.cumsum(weights, dim=0)

        self.alphas: Float[Tensor, "..."] = self.scheduler.alphas_cumprod.to(
            self.device
        )
        if self.cfg.use_sjc:
            # score jacobian chaining need mu
            self.us: Float[Tensor, "..."] = torch.sqrt((1 - self.alphas) / self.alphas)

        self.grad_clip_val: Optional[float] = None

        threestudio.info(f"Loaded Stable Diffusion!")