benchmark/bench_flash_mla.py [421:432]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    target_func = FUNC_TABLE[target]
    
    total_seqlens = cache_seqlens.sum().item()
    mean_seqlens = cache_seqlens.float().mean().int().item()
    max_seqlen = cache_seqlens.max().item()
    max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256
    # print(f"{total_seqlens=}, {mean_seqlens=}, {max_seqlen=}")

    q = torch.randn(b, s_q, h_q, d)
    block_size = 64
    block_table = torch.arange(b * max_seqlen_pad // block_size, dtype=torch.int32).view(b, max_seqlen_pad // block_size)
    blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



benchmark/bench_flash_mla.py [459:470]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    target_func = FUNC_TABLE[target]
    
    total_seqlens = cache_seqlens.sum().item()
    mean_seqlens = cache_seqlens.float().mean().int().item()
    max_seqlen = cache_seqlens.max().item()
    max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256
    # print(f"{total_seqlens=}, {mean_seqlens=}, {max_seqlen=}")

    q = torch.randn(b, s_q, h_q, d)
    block_size = 64
    block_table = torch.arange(b * max_seqlen_pad // block_size, dtype=torch.int32).view(b, max_seqlen_pad // block_size)
    blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



