in eland/ml/ml_model.py [0:0]
def model_type(self) -> str:
# Legacy way of finding model_type from the model definition.
if "inference_config" not in self._trained_model_config:
trained_model = self._trained_model_config["definition"]["trained_model"]
if "tree" in trained_model:
target_type = trained_model["tree"]["target_type"]
else:
target_type = trained_model["ensemble"]["target_type"]
return cast(str, target_type)
inference_config = self._trained_model_config["inference_config"]
if "classification" in inference_config:
return TYPE_CLASSIFICATION
elif "learning_to_rank" in inference_config:
return TYPE_LEARNING_TO_RANK
elif "regression" in inference_config:
return TYPE_REGRESSION
raise ValueError("Unable to determine 'model_type' for MLModel")