def model_type()

in eland/ml/ml_model.py [0:0]


    def model_type(self) -> str:
        # Legacy way of finding model_type from the model definition.
        if "inference_config" not in self._trained_model_config:
            trained_model = self._trained_model_config["definition"]["trained_model"]
            if "tree" in trained_model:
                target_type = trained_model["tree"]["target_type"]
            else:
                target_type = trained_model["ensemble"]["target_type"]
            return cast(str, target_type)

        inference_config = self._trained_model_config["inference_config"]
        if "classification" in inference_config:
            return TYPE_CLASSIFICATION
        elif "learning_to_rank" in inference_config:
            return TYPE_LEARNING_TO_RANK
        elif "regression" in inference_config:
            return TYPE_REGRESSION
        raise ValueError("Unable to determine 'model_type' for MLModel")