in eland/ml/pytorch/wrappers.py [0:0]
def from_pretrained(model_id: str, *, token: Optional[str] = None) -> Optional[Any]:
config = AutoConfig.from_pretrained(model_id, token=token)
def is_compatible() -> bool:
is_dpr_model = config.model_type == "dpr"
has_architectures = (
config.architectures is not None and len(config.architectures) == 1
)
is_supported_architecture = has_architectures and (
config.architectures[0] in _DPREncoderWrapper._SUPPORTED_MODELS_NAMES
)
return is_dpr_model and is_supported_architecture
if is_compatible():
model = getattr(transformers, config.architectures[0]).from_pretrained(
model_id, torchscript=True
)
return _DPREncoderWrapper(model)
else:
return None