in eland/ml/ltr/ltr_model_config.py [0:0]
def to_dict(self) -> Dict[str, Any]:
"""Convert the feature extractor into a dict that can be send to ES as part of the inference config."""
return {
self.type: {
k: v.to_dict() if hasattr(v, "to_dict") else v
for k, v in self.__dict__.items()
if v is not None and k != "type"
}
}