def to_dict()

in eland/ml/ltr/ltr_model_config.py [0:0]


    def to_dict(self) -> Dict[str, Any]:
        """Convert the feature extractor into a dict that can be send to ES as part of the inference config."""
        return {
            self.type: {
                k: v.to_dict() if hasattr(v, "to_dict") else v
                for k, v in self.__dict__.items()
                if v is not None and k != "type"
            }
        }