packages/charts/src/utils/d3-delaunay/index.ts (923 lines of code) (raw):
/**
* @notice
* This product includes code that is adapted d3-delaunay@5.2.1,
* which is available under a "ISC" license.
*
* Copyright 2018 Observable, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any purpose
* with or without fee is hereby granted, provided that the above copyright notice
* and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
* OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
* THIS SOFTWARE.
*/
// @ts-nocheck
/**
* Delaunay triangulation
*/
interface DelaunayI<P> {
/**
* The coordinates of the points as an array [x0, y0, x1, y1, ...].
* Typically, this is a Float64Array, however you can use any array-like type in the constructor.
*/
points: ArrayLike<number>;
/**
* The halfedge indices as an Int32Array [j0, j1, ...].
* For each index 0 <= i < halfedges.length, there is a halfedge from triangle vertex j = halfedges[i] to triangle vertex i.
*/
halfedges: Int32Array;
/**
* An arbitrary node on the convex hull.
* The convex hull is represented as a circular doubly-linked list of nodes.
*/
hull: Node;
/**
* The triangle vertex indices as an Uint32Array [i0, j0, k0, i1, j1, k1, ...].
* Each contiguous triplet of indices i, j, k forms a counterclockwise triangle.
* The coordinates of the triangle's points can be found by going through 'points'.
*/
triangles: Uint32Array;
/**
* The incoming halfedge indexes as a Int32Array [e0, e1, e2, ...].
* For each point i, inedges[i] is the halfedge index e of an incoming halfedge.
* For coincident points, the halfedge index is -1; for points on the convex hull, the incoming halfedge is on the convex hull; for other points, the choice of incoming halfedge is arbitrary.
*/
inedges: Int32Array;
/**
* The outgoing halfedge indexes as a Int32Array [e0, e1, e2, ...].
* For each point i on the convex hull, outedges[i] is the halfedge index e of the corresponding outgoing halfedge; for other points, the halfedge index is -1.
*/
outedges: Int32Array;
/**
* Returns the index of the input point that is closest to the specified point ⟨x, y⟩.
* The search is started at the specified point i. If i is not specified, it defaults to zero.
*/
find(x: number, y: number, i?: number): number;
/**
* Returns an iterable over the indexes of the neighboring points to the specified point i.
* The iterable is empty if i is a coincident point.
*/
neighbors(i: number): IterableIterator<number>;
/**
* Returns the closed polygon [[x0, y0], [x1, y1], ..., [x0, y0]] representing the convex hull.
*/
hullPolygon(): Polygon;
/**
* Returns the closed polygon [[x0, y0], [x1, y1], [x2, y2], [x0, y0]] representing the triangle i.
*/
trianglePolygon(i: number): Triangle;
/**
* Returns an iterable over the polygons for each triangle, in order.
*/
trianglePolygons(): IterableIterator<Triangle>;
/**
* Returns the Voronoi diagram for the associated points.
* When rendering, the diagram will be clipped to the specified bounds = [xmin, ymin, xmax, ymax].
* If bounds is not specified, it defaults to [0, 0, 960, 500].
* See To Infinity and Back Again for an interactive explanation of Voronoi cell clipping.
*/
voronoi(bounds?: Bounds): Voronoi<P>;
}
/**
* A point represented as an array tuple [x, y].
*/
type Point = number[];
/**
* A closed polygon [[x0, y0], [x1, y1], [x2, y2], [x0, y0]] representing a triangle.
*/
type Triangle = Point[];
/**
* A closed polygon [[x0, y0], [x1, y1], ..., [x0, y0]].
*/
type PolygonI = Point[];
/**
* A rectangular area [x, y, width, height].
*/
export type Bounds = number[];
/**
* A function to extract a x- or y-coordinate from the specified point.
*/
type GetCoordinate<P, PS> = (point: P, i: number, points: PS) => number;
/**
* A point node on a convex hull (represented as a circular linked list).
*/
interface Node {
/**
* The index of the associated point.
*/
i: number;
/**
* The x-coordinate of the associated point.
*/
x: number;
/**
* The y-coordinate of the associated point.
*/
y: number;
/**
* The index of the (incoming or outgoing?) associated halfedge.
*/
t: number;
/**
* The previous node on the hull.
*/
prev: Node;
/**
* The next node on the hull.
*/
next: Node;
/**
* Whether the node has been removed from the linked list.
*/
removed: boolean;
}
/**
* An interface for the rect() method of the CanvasPathMethods API.
*/
interface RectContext {
/**
* rect() method of the CanvasPathMethods API.
*/
rect(x: number, y: number, width: number, height: number): void;
}
/**
* An interface for the moveTo() method of the CanvasPathMethods API.
*/
interface MoveContext {
/**
* moveTo() method of the CanvasPathMethods API.
*/
moveTo(x: number, y: number): void;
}
/**
* An interface for the lineTo() method of the CanvasPathMethods API.
*/
interface LineContext {
/**
* lineTo() method of the CanvasPathMethods API.
*/
lineTo(x: number, y: number): void;
}
/**
* An interface for the arc() method of the CanvasPathMethods API.
*/
interface ArcContext {
/**
* arc() method of the CanvasPathMethods API.
*/
arc(x: number, y: number, radius: number, startAngle: number, endAngle: number, counterclockwise?: boolean): void;
}
/**
* An interface for the closePath() method of the CanvasPathMethods API.
*/
interface ClosableContext {
/**
* closePath() method of the CanvasPathMethods API.
*/
closePath(): void;
}
/**
* Voronoi regions
*/
interface VoronoiI<P> {
/**
* The Voronoi diagram’s associated Delaunay triangulation.
*/
delaunay: DelaunayI<P>;
/**
* The circumcenters of the Delaunay triangles [cx0, cy0, cx1, cy1, ...].
* Each contiguous pair of coordinates cx, cy is the circumcenter for the corresponding triangle.
* These circumcenters form the coordinates of the Voronoi cell polygons.
*/
circumcenters: Float64Array;
/**
* An array [vx0, vy0, wx0, wy0, ...] where each non-zero quadruple describes an open (infinite) cell
* on the outer hull, giving the directions of two open half-lines.
*/
vectors: Float64Array;
/**
* The bounds of the viewport [xmin, ymin, xmax, ymax] for rendering the Voronoi diagram.
* These values only affect the rendering methods (voronoi.render, voronoi.renderBounds, cell.render).
*/
xmin: number;
ymin: number;
xmax: number;
ymax: number;
/**
* Returns true if the cell with the specified index i contains the specified point ⟨x, y⟩.
* (This method is not affected by the associated Voronoi diagram’s viewport bounds.)
*/
contains(i: number, x: number, y: number): boolean;
/**
* Returns the convex, closed polygon [[x0, y0], [x1, y1], ..., [x0, y0]] representing the cell for the specified point i.
*/
cellPolygon(i: number): PolygonI;
/**
* Returns an iterable over the polygons for each cell, in order.
*/
cellPolygons(): IterableIterator<PolygonI>;
}
// https://github.com/d3/d3-delaunay v5.2.1 Copyright 2020 Mike Bostock
// https://github.com/mapbox/delaunator v4.0.1. Copyright 2019 Mapbox, Inc.
// Type definitions for d3-delaunay 4.1
// Project: https://github.com/d3/d3-delaunay
// Definitions by: Bradley Odell <https://github.com/BTOdell>
// Definitions: https://github.com/DefinitelyTyped/DefinitelyTyped
const EPSILON = Math.pow(2, -52);
const EDGE_STACK = new Uint32Array(512);
class Delaunator {
static from(points, getX = defaultGetX, getY = defaultGetY) {
const n = points.length;
const coords = new Float64Array(n * 2);
for (let i = 0; i < n; i++) {
const p = points[i];
coords[2 * i] = getX(p);
coords[2 * i + 1] = getY(p);
}
return new Delaunator(coords);
}
constructor(coords) {
const n = coords.length >> 1;
if (n > 0 && typeof coords[0] !== 'number') throw new Error('Expected coords to contain numbers.');
this.coords = coords;
// arrays that will store the triangulation graph
const maxTriangles = Math.max(2 * n - 5, 0);
this._triangles = new Uint32Array(maxTriangles * 3);
this._halfedges = new Int32Array(maxTriangles * 3);
// temporary arrays for tracking the edges of the advancing convex hull
this._hashSize = Math.ceil(Math.sqrt(n));
this._hullPrev = new Uint32Array(n); // edge to prev edge
this._hullNext = new Uint32Array(n); // edge to next edge
this._hullTri = new Uint32Array(n); // edge to adjacent triangle
this._hullHash = new Int32Array(this._hashSize).fill(-1); // angular edge hash
// temporary arrays for sorting points
this._ids = new Uint32Array(n);
this._dists = new Float64Array(n);
this.update();
}
update() {
const { coords, _hullPrev: hullPrev, _hullNext: hullNext, _hullTri: hullTri, _hullHash: hullHash } = this;
const n = coords.length >> 1;
// populate an array of point indices; calculate input data bbox
let minX = Infinity;
let minY = Infinity;
let maxX = -Infinity;
let maxY = -Infinity;
for (let i = 0; i < n; i++) {
const x = coords[2 * i];
const y = coords[2 * i + 1];
if (x < minX) minX = x;
if (y < minY) minY = y;
if (x > maxX) maxX = x;
if (y > maxY) maxY = y;
this._ids[i] = i;
}
const cx = (minX + maxX) / 2;
const cy = (minY + maxY) / 2;
let minDist = Infinity;
let i0, i1, i2;
// pick a seed point close to the center
for (let i = 0; i < n; i++) {
const d = dist(cx, cy, coords[2 * i], coords[2 * i + 1]);
if (d < minDist) {
i0 = i;
minDist = d;
}
}
const i0x = coords[2 * i0];
const i0y = coords[2 * i0 + 1];
minDist = Infinity;
// find the point closest to the seed
for (let i = 0; i < n; i++) {
if (i === i0) continue;
const d = dist(i0x, i0y, coords[2 * i], coords[2 * i + 1]);
if (d < minDist && d > 0) {
i1 = i;
minDist = d;
}
}
let i1x = coords[2 * i1];
let i1y = coords[2 * i1 + 1];
let minRadius = Infinity;
// find the third point which forms the smallest circumcircle with the first two
for (let i = 0; i < n; i++) {
if (i === i0 || i === i1) continue;
const r = circumradius(i0x, i0y, i1x, i1y, coords[2 * i], coords[2 * i + 1]);
if (r < minRadius) {
i2 = i;
minRadius = r;
}
}
let i2x = coords[2 * i2];
let i2y = coords[2 * i2 + 1];
if (minRadius === Infinity) {
// order collinear points by dx (or dy if all x are identical)
// and return the list as a hull
for (let i = 0; i < n; i++) {
this._dists[i] = coords[2 * i] - coords[0] || coords[2 * i + 1] - coords[1];
}
quicksort(this._ids, this._dists, 0, n - 1);
const hull = new Uint32Array(n);
let j = 0;
for (let i = 0, d0 = -Infinity; i < n; i++) {
const id = this._ids[i];
if (this._dists[id] > d0) {
hull[j++] = id;
d0 = this._dists[id];
}
}
this.hull = hull.subarray(0, j);
this.triangles = new Uint32Array(0);
this.halfedges = new Uint32Array(0);
return;
}
// swap the order of the seed points for counter-clockwise orientation
if (orient(i0x, i0y, i1x, i1y, i2x, i2y)) {
const i = i1;
const x = i1x;
const y = i1y;
i1 = i2;
i1x = i2x;
i1y = i2y;
i2 = i;
i2x = x;
i2y = y;
}
const center = circumcenter(i0x, i0y, i1x, i1y, i2x, i2y);
this._cx = center.x;
this._cy = center.y;
for (let i = 0; i < n; i++) {
this._dists[i] = dist(coords[2 * i], coords[2 * i + 1], center.x, center.y);
}
// sort the points by distance from the seed triangle circumcenter
quicksort(this._ids, this._dists, 0, n - 1);
// set up the seed triangle as the starting hull
this._hullStart = i0;
let hullSize = 3;
hullNext[i0] = hullPrev[i2] = i1;
hullNext[i1] = hullPrev[i0] = i2;
hullNext[i2] = hullPrev[i1] = i0;
hullTri[i0] = 0;
hullTri[i1] = 1;
hullTri[i2] = 2;
hullHash.fill(-1);
hullHash[this._hashKey(i0x, i0y)] = i0;
hullHash[this._hashKey(i1x, i1y)] = i1;
hullHash[this._hashKey(i2x, i2y)] = i2;
this.trianglesLen = 0;
this._addTriangle(i0, i1, i2, -1, -1, -1);
for (let k = 0, xp, yp; k < this._ids.length; k++) {
const i = this._ids[k];
const x = coords[2 * i];
const y = coords[2 * i + 1];
// skip near-duplicate points
if (k > 0 && Math.abs(x - xp) <= EPSILON && Math.abs(y - yp) <= EPSILON) continue;
xp = x;
yp = y;
// skip seed triangle points
if (i === i0 || i === i1 || i === i2) continue;
// find a visible edge on the convex hull using edge hash
let start = 0;
for (let j = 0, key = this._hashKey(x, y); j < this._hashSize; j++) {
start = hullHash[(key + j) % this._hashSize];
if (start !== -1 && start !== hullNext[start]) break;
}
start = hullPrev[start];
let e = start,
q;
while (((q = hullNext[e]), !orient(x, y, coords[2 * e], coords[2 * e + 1], coords[2 * q], coords[2 * q + 1]))) {
e = q;
if (e === start) {
e = -1;
break;
}
}
if (e === -1) continue; // likely a near-duplicate point; skip it
// add the first triangle from the point
let t = this._addTriangle(e, i, hullNext[e], -1, -1, hullTri[e]);
// recursively flip triangles from the point until they satisfy the Delaunay condition
hullTri[i] = this._legalize(t + 2);
hullTri[e] = t; // keep track of boundary triangles on the hull
hullSize++;
// walk forward through the hull, adding more triangles and flipping recursively
let n = hullNext[e];
while (((q = hullNext[n]), orient(x, y, coords[2 * n], coords[2 * n + 1], coords[2 * q], coords[2 * q + 1]))) {
t = this._addTriangle(n, i, q, hullTri[i], -1, hullTri[n]);
hullTri[i] = this._legalize(t + 2);
hullNext[n] = n; // mark as removed
hullSize--;
n = q;
}
// walk backward from the other side, adding more triangles and flipping
if (e === start) {
while (((q = hullPrev[e]), orient(x, y, coords[2 * q], coords[2 * q + 1], coords[2 * e], coords[2 * e + 1]))) {
t = this._addTriangle(q, i, e, -1, hullTri[e], hullTri[q]);
this._legalize(t + 2);
hullTri[q] = t;
hullNext[e] = e; // mark as removed
hullSize--;
e = q;
}
}
// update the hull indices
this._hullStart = hullPrev[i] = e;
hullNext[e] = hullPrev[n] = i;
hullNext[i] = n;
// save the two new edges in the hash table
hullHash[this._hashKey(x, y)] = i;
hullHash[this._hashKey(coords[2 * e], coords[2 * e + 1])] = e;
}
this.hull = new Uint32Array(hullSize);
for (let i = 0, e = this._hullStart; i < hullSize; i++) {
this.hull[i] = e;
e = hullNext[e];
}
// trim typed triangle mesh arrays
this.triangles = this._triangles.subarray(0, this.trianglesLen);
this.halfedges = this._halfedges.subarray(0, this.trianglesLen);
}
_hashKey(x, y) {
return Math.floor(pseudoAngle(x - this._cx, y - this._cy) * this._hashSize) % this._hashSize;
}
_legalize(a) {
const { _triangles: triangles, _halfedges: halfedges, coords } = this;
let i = 0;
let ar = 0;
// recursion eliminated with a fixed-size stack
while (true) {
const b = halfedges[a];
/* if the pair of triangles doesn't satisfy the Delaunay condition
* (p1 is inside the circumcircle of [p0, pl, pr]), flip them,
* then do the same check/flip recursively for the new pair of triangles
*
* pl pl
* /||\ / \
* al/ || \bl al/ \a
* / || \ / \
* / a||b \ flip /___ar___\
* p0\ || /p1 => p0\---bl---/p1
* \ || / \ /
* ar\ || /br b\ /br
* \||/ \ /
* pr pr
*/
const a0 = a - (a % 3);
ar = a0 + ((a + 2) % 3);
if (b === -1) {
// convex hull edge
if (i === 0) break;
a = EDGE_STACK[--i];
continue;
}
const b0 = b - (b % 3);
const al = a0 + ((a + 1) % 3);
const bl = b0 + ((b + 2) % 3);
const p0 = triangles[ar];
const pr = triangles[a];
const pl = triangles[al];
const p1 = triangles[bl];
const illegal = inCircle(
coords[2 * p0],
coords[2 * p0 + 1],
coords[2 * pr],
coords[2 * pr + 1],
coords[2 * pl],
coords[2 * pl + 1],
coords[2 * p1],
coords[2 * p1 + 1],
);
if (illegal) {
triangles[a] = p1;
triangles[b] = p0;
const hbl = halfedges[bl];
// edge swapped on the other side of the hull (rare); fix the halfedge reference
if (hbl === -1) {
let e = this._hullStart;
do {
if (this._hullTri[e] === bl) {
this._hullTri[e] = a;
break;
}
e = this._hullPrev[e];
} while (e !== this._hullStart);
}
this._link(a, hbl);
this._link(b, halfedges[ar]);
this._link(ar, bl);
const br = b0 + ((b + 1) % 3);
// don't worry about hitting the cap: it can only happen on extremely degenerate input
if (i < EDGE_STACK.length) {
EDGE_STACK[i++] = br;
}
} else {
if (i === 0) break;
a = EDGE_STACK[--i];
}
}
return ar;
}
_link(a, b) {
this._halfedges[a] = b;
if (b !== -1) this._halfedges[b] = a;
}
// add a new triangle given vertex indices and adjacent half-edge ids
_addTriangle(i0, i1, i2, a, b, c) {
const t = this.trianglesLen;
this._triangles[t] = i0;
this._triangles[t + 1] = i1;
this._triangles[t + 2] = i2;
this._link(t, a);
this._link(t + 1, b);
this._link(t + 2, c);
this.trianglesLen += 3;
return t;
}
}
// monotonically increases with real angle, but doesn't need expensive trigonometry
function pseudoAngle(dx, dy) {
const p = dx / (Math.abs(dx) + Math.abs(dy));
return (dy > 0 ? 3 - p : 1 + p) / 4; // [0..1]
}
function dist(ax, ay, bx, by) {
const dx = ax - bx;
const dy = ay - by;
return dx * dx + dy * dy;
}
// return 2d orientation sign if we're confident in it through J. Shewchuk's error bound check
function orientIfSure(px, py, rx, ry, qx, qy) {
const l = (ry - py) * (qx - px);
const r = (rx - px) * (qy - py);
return Math.abs(l - r) >= 3.3306690738754716e-16 * Math.abs(l + r) ? l - r : 0;
}
// a more robust orientation test that's stable in a given triangle (to fix robustness issues)
function orient(rx, ry, qx, qy, px, py) {
const sign =
orientIfSure(px, py, rx, ry, qx, qy) ||
orientIfSure(rx, ry, qx, qy, px, py) ||
orientIfSure(qx, qy, px, py, rx, ry);
return sign < 0;
}
function inCircle(ax, ay, bx, by, cx, cy, px, py) {
const dx = ax - px;
const dy = ay - py;
const ex = bx - px;
const ey = by - py;
const fx = cx - px;
const fy = cy - py;
const ap = dx * dx + dy * dy;
const bp = ex * ex + ey * ey;
const cp = fx * fx + fy * fy;
return dx * (ey * cp - bp * fy) - dy * (ex * cp - bp * fx) + ap * (ex * fy - ey * fx) < 0;
}
function circumradius(ax, ay, bx, by, cx, cy) {
const dx = bx - ax;
const dy = by - ay;
const ex = cx - ax;
const ey = cy - ay;
const bl = dx * dx + dy * dy;
const cl = ex * ex + ey * ey;
const d = 0.5 / (dx * ey - dy * ex);
const x = (ey * bl - dy * cl) * d;
const y = (dx * cl - ex * bl) * d;
return x * x + y * y;
}
function circumcenter(ax, ay, bx, by, cx, cy) {
const dx = bx - ax;
const dy = by - ay;
const ex = cx - ax;
const ey = cy - ay;
const bl = dx * dx + dy * dy;
const cl = ex * ex + ey * ey;
const d = 0.5 / (dx * ey - dy * ex);
const x = ax + (ey * bl - dy * cl) * d;
const y = ay + (dx * cl - ex * bl) * d;
return { x, y };
}
function quicksort(ids, dists, left, right) {
if (right - left <= 20) {
for (let i = left + 1; i <= right; i++) {
const temp = ids[i];
const tempDist = dists[temp];
let j = i - 1;
while (j >= left && dists[ids[j]] > tempDist) ids[j + 1] = ids[j--];
ids[j + 1] = temp;
}
} else {
const median = (left + right) >> 1;
let i = left + 1;
let j = right;
swap(ids, median, i);
if (dists[ids[left]] > dists[ids[right]]) swap(ids, left, right);
if (dists[ids[i]] > dists[ids[right]]) swap(ids, i, right);
if (dists[ids[left]] > dists[ids[i]]) swap(ids, left, i);
const temp = ids[i];
const tempDist = dists[temp];
while (true) {
do i++;
while (dists[ids[i]] < tempDist);
do j--;
while (dists[ids[j]] > tempDist);
if (j < i) break;
swap(ids, i, j);
}
ids[left + 1] = ids[j];
ids[j] = temp;
if (right - i + 1 >= j - left) {
quicksort(ids, dists, i, right);
quicksort(ids, dists, left, j - 1);
} else {
quicksort(ids, dists, left, j - 1);
quicksort(ids, dists, i, right);
}
}
}
function swap(arr, i, j) {
const tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
function defaultGetX(p) {
return p[0];
}
function defaultGetY(p) {
return p[1];
}
const epsilon = 1e-6;
class Path {
constructor() {
this._x0 = this._y0 = this._x1 = this._y1 = null; // start of current subpath // end of current subpath
this._ = '';
}
moveTo(x, y) {
this._ += `M${(this._x0 = this._x1 = +x)},${(this._y0 = this._y1 = +y)}`;
}
closePath() {
if (this._x1 !== null) {
(this._x1 = this._x0), (this._y1 = this._y0);
this._ += 'Z';
}
}
lineTo(x, y) {
this._ += `L${(this._x1 = +x)},${(this._y1 = +y)}`;
}
arc(x, y, r) {
(x = +x), (y = +y), (r = +r);
const x0 = x + r;
const y0 = y;
if (r < 0) throw new Error('negative radius');
if (this._x1 === null) this._ += `M${x0},${y0}`;
else if (Math.abs(this._x1 - x0) > epsilon || Math.abs(this._y1 - y0) > epsilon) this._ += 'L' + x0 + ',' + y0;
if (!r) return;
this._ += `A${r},${r},0,1,1,${x - r},${y}A${r},${r},0,1,1,${(this._x1 = x0)},${(this._y1 = y0)}`;
}
rect(x, y, w, h) {
this._ += `M${(this._x0 = this._x1 = +x)},${(this._y0 = this._y1 = +y)}h${+w}v${+h}h${-w}Z`;
}
value() {
return this._ || null;
}
}
class Polygon {
constructor() {
this._ = [];
}
moveTo(x, y) {
this._.push([x, y]);
}
closePath() {
this._.push(this._[0].slice());
}
lineTo(x, y) {
this._.push([x, y]);
}
value() {
return this._.length ? this._ : null;
}
}
export class Voronoi<P> implements VoronoiI<P> {
xmin: number;
ymin: number;
xmax: number;
ymax: number;
/**
* The Voronoi diagram’s associated Delaunay triangulation.
*/
delaunay: DelaunayI<P>;
/**
* The circumcenters of the Delaunay triangles [cx0, cy0, cx1, cy1, ...].
* Each contiguous pair of coordinates cx, cy is the circumcenter for the corresponding triangle.
* These circumcenters form the coordinates of the Voronoi cell polygons.
*/
circumcenters: Float64Array;
/**
* An array [vx0, vy0, wx0, wy0, ...] where each non-zero quadruple describes an open (infinite) cell
* on the outer hull, giving the directions of two open half-lines.
*/
vectors: Float64Array;
constructor(delaunay: DelaunayI<P>, [xmin, ymin, xmax, ymax]: Bounds = [0, 0, 960, 500]) {
if (!((xmax = +xmax) >= (xmin = +xmin)) || !((ymax = +ymax) >= (ymin = +ymin))) throw new Error('invalid bounds');
this.delaunay = delaunay;
this._circumcenters = new Float64Array(delaunay.points.length * 2);
this.vectors = new Float64Array(delaunay.points.length * 2);
(this.xmax = xmax), (this.xmin = xmin);
(this.ymax = ymax), (this.ymin = ymin);
this._init();
}
update() {
this.delaunay.update();
this._init();
return this;
}
_init() {
const {
delaunay: { points, hull, triangles },
vectors,
} = this;
// Compute circumcenters.
const circumcenters = (this.circumcenters = this._circumcenters.subarray(0, (triangles.length / 3) * 2));
for (let i = 0, j = 0, n = triangles.length, x, y; i < n; i += 3, j += 2) {
const t1 = triangles[i] * 2;
const t2 = triangles[i + 1] * 2;
const t3 = triangles[i + 2] * 2;
const x1 = points[t1];
const y1 = points[t1 + 1];
const x2 = points[t2];
const y2 = points[t2 + 1];
const x3 = points[t3];
const y3 = points[t3 + 1];
const dx = x2 - x1;
const dy = y2 - y1;
const ex = x3 - x1;
const ey = y3 - y1;
const bl = dx * dx + dy * dy;
const cl = ex * ex + ey * ey;
const ab = (dx * ey - dy * ex) * 2;
if (!ab) {
// degenerate case (collinear diagram)
x = (x1 + x3) / 2 - 1e8 * ey;
y = (y1 + y3) / 2 + 1e8 * ex;
} else if (Math.abs(ab) < 1e-8) {
// almost equal points (degenerate triangle)
x = (x1 + x3) / 2;
y = (y1 + y3) / 2;
} else {
const d = 1 / ab;
x = x1 + (ey * bl - dy * cl) * d;
y = y1 + (dx * cl - ex * bl) * d;
}
circumcenters[j] = x;
circumcenters[j + 1] = y;
}
// Compute exterior cell rays.
let h = hull[hull.length - 1];
let p0,
p1 = h * 4;
let x0,
x1 = points[2 * h];
let y0,
y1 = points[2 * h + 1];
vectors.fill(0);
for (let i = 0; i < hull.length; ++i) {
h = hull[i];
(p0 = p1), (x0 = x1), (y0 = y1);
(p1 = h * 4), (x1 = points[2 * h]), (y1 = points[2 * h + 1]);
vectors[p0 + 2] = vectors[p1] = y0 - y1;
vectors[p0 + 3] = vectors[p1 + 1] = x1 - x0;
}
}
/**
* Renders the mesh of Voronoi cells to the specified context.
* The specified context must implement the context.moveTo and context.lineTo methods from the CanvasPathMethods API.
*/
render(context: MoveContext & LineContext): void {
const buffer = context === null ? (context = new Path()) : undefined;
const {
delaunay: { halfedges, inedges, hull },
circumcenters,
vectors,
} = this;
if (hull.length <= 1) return null;
for (let i = 0, n = halfedges.length; i < n; ++i) {
const j = halfedges[i];
if (j < i) continue;
const ti = Math.floor(i / 3) * 2;
const tj = Math.floor(j / 3) * 2;
const xi = circumcenters[ti];
const yi = circumcenters[ti + 1];
const xj = circumcenters[tj];
const yj = circumcenters[tj + 1];
this._renderSegment(xi, yi, xj, yj, context);
}
let h0,
h1 = hull[hull.length - 1];
for (let i = 0; i < hull.length; ++i) {
(h0 = h1), (h1 = hull[i]);
const t = Math.floor(inedges[h1] / 3) * 2;
const x = circumcenters[t];
const y = circumcenters[t + 1];
const v = h0 * 4;
const p = this._project(x, y, vectors[v + 2], vectors[v + 3]);
if (p) this._renderSegment(x, y, p[0], p[1], context);
}
return buffer && buffer.value();
}
/**
* Renders the viewport extent to the specified context.
* The specified context must implement the context.rect method from the CanvasPathMethods API.
* Equivalent to context.rect(voronoi.xmin, voronoi.ymin, voronoi.xmax - voronoi.xmin, voronoi.ymax - voronoi.ymin).
*/
renderBounds(context: RectContext): void {
const buffer = context === null ? (context = new Path()) : undefined;
context.rect(this.xmin, this.ymin, this.xmax - this.xmin, this.ymax - this.ymin);
return buffer && buffer.value();
}
/**
* Renders the cell with the specified index i to the specified context.
* The specified context must implement the context.moveTo, context.lineTo, and context.closePath methods from the CanvasPathMethods API.
*/
renderCell(i: number, context: MoveContext & LineContext & ClosableContext): void {
const buffer = context == null ? (context = new Path()) : undefined;
const points = this._clip(i);
if (points === null) return;
context.moveTo(points[0], points[1]);
let n = points.length;
while (points[0] === points[n - 2] && points[1] === points[n - 1] && n > 1) n -= 2;
for (let i = 2; i < n; i += 2) {
if (points[i] !== points[i - 2] || points[i + 1] !== points[i - 1]) context.lineTo(points[i], points[i + 1]);
}
context.closePath();
return buffer && buffer.value();
}
*cellPolygons() {
const {
delaunay: { points },
} = this;
for (let i = 0, n = points.length / 2; i < n; ++i) {
const cell = this.cellPolygon(i);
if (cell) yield cell;
}
}
cellPolygon(i) {
const polygon = new Polygon();
this.renderCell(i, polygon);
return polygon.value();
}
_renderSegment(x0, y0, x1, y1, context) {
let S;
const c0 = this._regioncode(x0, y0);
const c1 = this._regioncode(x1, y1);
if (c0 === 0 && c1 === 0) {
context.moveTo(x0, y0);
context.lineTo(x1, y1);
} else if ((S = this._clipSegment(x0, y0, x1, y1, c0, c1))) {
context.moveTo(S[0], S[1]);
context.lineTo(S[2], S[3]);
}
}
contains(i, x, y) {
if (((x = +x), x !== x) || ((y = +y), y !== y)) return false;
return this.delaunay._step(i, x, y) === i;
}
*neighbors(i) {
const ci = this._clip(i);
if (ci)
for (const j of this.delaunay.neighbors(i)) {
const cj = this._clip(j);
// find the common edge
if (cj)
loop: for (let ai = 0, li = ci.length; ai < li; ai += 2) {
for (let aj = 0, lj = cj.length; aj < lj; aj += 2) {
if (
ci[ai] == cj[aj] &&
ci[ai + 1] == cj[aj + 1] &&
ci[(ai + 2) % li] == cj[(aj + lj - 2) % lj] &&
ci[(ai + 3) % li] == cj[(aj + lj - 1) % lj]
) {
yield j;
break loop;
}
}
}
}
}
_cell(i) {
const {
circumcenters,
delaunay: { inedges, halfedges, triangles },
} = this;
const e0 = inedges[i];
if (e0 === -1) return null; // coincident point
const points = [];
let e = e0;
do {
const t = Math.floor(e / 3);
points.push(circumcenters[t * 2], circumcenters[t * 2 + 1]);
e = e % 3 === 2 ? e - 2 : e + 1;
if (triangles[e] !== i) break; // bad triangulation
e = halfedges[e];
} while (e !== e0 && e !== -1);
return points;
}
_clip(i) {
// degenerate case (1 valid point: return the box)
if (i === 0 && this.delaunay.hull.length === 1) {
return [this.xmax, this.ymin, this.xmax, this.ymax, this.xmin, this.ymax, this.xmin, this.ymin];
}
const points = this._cell(i);
if (points === null) return null;
const { vectors: V } = this;
const v = i * 4;
return V[v] || V[v + 1]
? this._clipInfinite(i, points, V[v], V[v + 1], V[v + 2], V[v + 3])
: this._clipFinite(i, points);
}
_clipFinite(i, points) {
const n = points.length;
let P = null;
let x0,
y0,
x1 = points[n - 2],
y1 = points[n - 1];
let c0,
c1 = this._regioncode(x1, y1);
let e0, e1;
for (let j = 0; j < n; j += 2) {
(x0 = x1), (y0 = y1), (x1 = points[j]), (y1 = points[j + 1]);
(c0 = c1), (c1 = this._regioncode(x1, y1));
if (c0 === 0 && c1 === 0) {
(e0 = e1), (e1 = 0);
if (P) P.push(x1, y1);
else P = [x1, y1];
} else {
let S, sx0, sy0, sx1, sy1;
if (c0 === 0) {
if ((S = this._clipSegment(x0, y0, x1, y1, c0, c1)) === null) continue;
[sx0, sy0, sx1, sy1] = S;
} else {
if ((S = this._clipSegment(x1, y1, x0, y0, c1, c0)) === null) continue;
[sx1, sy1, sx0, sy0] = S;
(e0 = e1), (e1 = this._edgecode(sx0, sy0));
if (e0 && e1) this._edge(i, e0, e1, P, P.length);
if (P) P.push(sx0, sy0);
else P = [sx0, sy0];
}
(e0 = e1), (e1 = this._edgecode(sx1, sy1));
if (e0 && e1) this._edge(i, e0, e1, P, P.length);
if (P) P.push(sx1, sy1);
else P = [sx1, sy1];
}
}
if (P) {
(e0 = e1), (e1 = this._edgecode(P[0], P[1]));
if (e0 && e1) this._edge(i, e0, e1, P, P.length);
} else if (this.contains(i, (this.xmin + this.xmax) / 2, (this.ymin + this.ymax) / 2)) {
return [this.xmax, this.ymin, this.xmax, this.ymax, this.xmin, this.ymax, this.xmin, this.ymin];
}
return P;
}
_clipSegment(x0, y0, x1, y1, c0, c1) {
while (true) {
if (c0 === 0 && c1 === 0) return [x0, y0, x1, y1];
if (c0 & c1) return null;
let x,
y,
c = c0 || c1;
if (c & 0b1000) (x = x0 + ((x1 - x0) * (this.ymax - y0)) / (y1 - y0)), (y = this.ymax);
else if (c & 0b0100) (x = x0 + ((x1 - x0) * (this.ymin - y0)) / (y1 - y0)), (y = this.ymin);
else if (c & 0b0010) (y = y0 + ((y1 - y0) * (this.xmax - x0)) / (x1 - x0)), (x = this.xmax);
else (y = y0 + ((y1 - y0) * (this.xmin - x0)) / (x1 - x0)), (x = this.xmin);
if (c0) (x0 = x), (y0 = y), (c0 = this._regioncode(x0, y0));
else (x1 = x), (y1 = y), (c1 = this._regioncode(x1, y1));
}
}
_clipInfinite(i, points, vx0, vy0, vxn, vyn) {
let P = Array.from(points),
p;
if ((p = this._project(P[0], P[1], vx0, vy0))) P.unshift(p[0], p[1]);
if ((p = this._project(P[P.length - 2], P[P.length - 1], vxn, vyn))) P.push(p[0], p[1]);
if ((P = this._clipFinite(i, P))) {
for (let j = 0, n = P.length, c0, c1 = this._edgecode(P[n - 2], P[n - 1]); j < n; j += 2) {
(c0 = c1), (c1 = this._edgecode(P[j], P[j + 1]));
if (c0 && c1) (j = this._edge(i, c0, c1, P, j)), (n = P.length);
}
} else if (this.contains(i, (this.xmin + this.xmax) / 2, (this.ymin + this.ymax) / 2)) {
P = [this.xmin, this.ymin, this.xmax, this.ymin, this.xmax, this.ymax, this.xmin, this.ymax];
}
return P;
}
_edge(i, e0, e1, P, j) {
while (e0 !== e1) {
let x, y;
switch (e0) {
case 0b0101:
e0 = 0b0100;
continue; // top-left
case 0b0100:
(e0 = 0b0110), (x = this.xmax), (y = this.ymin);
break; // top
case 0b0110:
e0 = 0b0010;
continue; // top-right
case 0b0010:
(e0 = 0b1010), (x = this.xmax), (y = this.ymax);
break; // right
case 0b1010:
e0 = 0b1000;
continue; // bottom-right
case 0b1000:
(e0 = 0b1001), (x = this.xmin), (y = this.ymax);
break; // bottom
case 0b1001:
e0 = 0b0001;
continue; // bottom-left
case 0b0001:
(e0 = 0b0101), (x = this.xmin), (y = this.ymin);
break; // left
}
if ((P[j] !== x || P[j + 1] !== y) && this.contains(i, x, y)) {
P.splice(j, 0, x, y), (j += 2);
}
}
if (P.length > 4) {
for (let i = 0; i < P.length; i += 2) {
const j = (i + 2) % P.length,
k = (i + 4) % P.length;
if ((P[i] === P[j] && P[j] === P[k]) || (P[i + 1] === P[j + 1] && P[j + 1] === P[k + 1]))
P.splice(j, 2), (i -= 2);
}
}
return j;
}
_project(x0, y0, vx, vy) {
let t = Infinity,
c,
x,
y;
if (vy < 0) {
// top
if (y0 <= this.ymin) return null;
if ((c = (this.ymin - y0) / vy) < t) (y = this.ymin), (x = x0 + (t = c) * vx);
} else if (vy > 0) {
// bottom
if (y0 >= this.ymax) return null;
if ((c = (this.ymax - y0) / vy) < t) (y = this.ymax), (x = x0 + (t = c) * vx);
}
if (vx > 0) {
// right
if (x0 >= this.xmax) return null;
if ((c = (this.xmax - x0) / vx) < t) (x = this.xmax), (y = y0 + (t = c) * vy);
} else if (vx < 0) {
// left
if (x0 <= this.xmin) return null;
if ((c = (this.xmin - x0) / vx) < t) (x = this.xmin), (y = y0 + (t = c) * vy);
}
return [x, y];
}
_edgecode(x, y) {
return (
(x === this.xmin ? 0b0001 : x === this.xmax ? 0b0010 : 0b0000) |
(y === this.ymin ? 0b0100 : y === this.ymax ? 0b1000 : 0b0000)
);
}
_regioncode(x, y) {
return (
(x < this.xmin ? 0b0001 : x > this.xmax ? 0b0010 : 0b0000) |
(y < this.ymin ? 0b0100 : y > this.ymax ? 0b1000 : 0b0000)
);
}
}
const tau = 2 * Math.PI;
function pointX(p) {
return p[0];
}
function pointY(p) {
return p[1];
}
// A triangulation is collinear if all its triangles have a non-null area
function collinear(d) {
const { triangles, coords } = d;
for (let i = 0; i < triangles.length; i += 3) {
const a = 2 * triangles[i],
b = 2 * triangles[i + 1],
c = 2 * triangles[i + 2],
cross =
(coords[c] - coords[a]) * (coords[b + 1] - coords[a + 1]) -
(coords[b] - coords[a]) * (coords[c + 1] - coords[a + 1]);
if (cross > 1e-10) return false;
}
return true;
}
function jitter(x, y, r) {
return [x + Math.sin(x + y) * r, y + Math.cos(x - y) * r];
}
export class Delaunay<P> implements DelaunayI<P> {
/**
* The coordinates of the points as an array [x0, y0, x1, y1, ...].
* Typically, this is a Float64Array, however you can use any array-like type in the constructor.
*/
points: ArrayLike<number>;
/**
* The halfedge indices as an Int32Array [j0, j1, ...].
* For each index 0 <= i < halfedges.length, there is a halfedge from triangle vertex j = halfedges[i] to triangle vertex i.
*/
halfedges: Int32Array;
/**
* An arbitrary node on the convex hull.
* The convex hull is represented as a circular doubly-linked list of nodes.
*/
hull: Node;
/**
* The triangle vertex indices as an Uint32Array [i0, j0, k0, i1, j1, k1, ...].
* Each contiguous triplet of indices i, j, k forms a counterclockwise triangle.
* The coordinates of the triangle's points can be found by going through 'points'.
*/
triangles: Uint32Array;
/**
* The incoming halfedge indexes as a Int32Array [e0, e1, e2, ...].
* For each point i, inedges[i] is the halfedge index e of an incoming halfedge.
* For coincident points, the halfedge index is -1; for points on the convex hull, the incoming halfedge is on the convex hull; for other points, the choice of incoming halfedge is arbitrary.
*/
inedges: Int32Array;
/**
* The outgoing halfedge indexes as a Int32Array [e0, e1, e2, ...].
* For each point i on the convex hull, outedges[i] is the halfedge index e of the corresponding outgoing halfedge; for other points, the halfedge index is -1.
*/
outedges: Int32Array;
/**
* Returns the Delaunay triangulation for the given array or iterable of points.
* Otherwise, the getX and getY functions are invoked for each point in order, and must return the respective x- and y-coordinate for each point.
* If that is specified, the functions getX and getY are invoked with that as this.
* (See Array.from for reference.)
*/
static from<P>(
points: ArrayLike<P> | Iterable<P>,
fx: GetCoordinate<P, ArrayLike<P> | Iterable<P>> = pointX,
fy: GetCoordinate<P, ArrayLike<P> | Iterable<P>> = pointY,
that?: any,
): Delaunay<P> {
return new Delaunay(
'length' in points ? flatArray(points, fx, fy, that) : Float64Array.from(flatIterable(points, fx, fy, that)),
);
}
/**
* Returns the Delaunay triangulation for the given flat array [x0, y0, x1, y1, …] of points.
*/
constructor(points: ArrayLike<number>) {
this._delaunator = new Delaunator(points);
this.inedges = new Int32Array(points.length / 2);
this._hullIndex = new Int32Array(points.length / 2);
this.points = this._delaunator.coords;
this._init();
}
update() {
this._delaunator.update();
this._init();
return this;
}
_init() {
const d = this._delaunator,
points = this.points;
// check for collinear
if (d.hull && d.hull.length > 2 && collinear(d)) {
this.collinear = Int32Array.from({ length: points.length / 2 }, (_, i) => i).sort(
(i, j) => points[2 * i] - points[2 * j] || points[2 * i + 1] - points[2 * j + 1],
); // for exact neighbors
const e = this.collinear[0],
f = this.collinear[this.collinear.length - 1],
bounds = [points[2 * e], points[2 * e + 1], points[2 * f], points[2 * f + 1]],
r = 1e-8 * Math.sqrt((bounds[3] - bounds[1]) ** 2 + (bounds[2] - bounds[0]) ** 2);
for (let i = 0, n = points.length / 2; i < n; ++i) {
const p = jitter(points[2 * i], points[2 * i + 1], r);
points[2 * i] = p[0];
points[2 * i + 1] = p[1];
}
this._delaunator = new Delaunator(points);
} else {
delete this.collinear;
}
const halfedges = (this.halfedges = this._delaunator.halfedges);
const hull = (this.hull = this._delaunator.hull);
const triangles = (this.triangles = this._delaunator.triangles);
const inedges = this.inedges.fill(-1);
const hullIndex = this._hullIndex.fill(-1);
// Compute an index from each point to an (arbitrary) incoming halfedge
// Used to give the first neighbor of each point; for this reason,
// on the hull we give priority to exterior halfedges
for (let e = 0, n = halfedges.length; e < n; ++e) {
const p = triangles[e % 3 === 2 ? e - 2 : e + 1];
if (halfedges[e] === -1 || inedges[p] === -1) inedges[p] = e;
}
for (let i = 0, n = hull.length; i < n; ++i) {
hullIndex[hull[i]] = i;
}
// degenerate case: 1 or 2 (distinct) points
if (hull.length <= 2 && hull.length > 0) {
this.triangles = new Int32Array(3).fill(-1);
this.halfedges = new Int32Array(3).fill(-1);
this.triangles[0] = hull[0];
this.triangles[1] = hull[1];
this.triangles[2] = hull[1];
inedges[hull[0]] = 1;
if (hull.length === 2) inedges[hull[1]] = 0;
}
}
voronoi(bounds) {
return new Voronoi(this, bounds);
}
*neighbors(i) {
const { inedges, hull, _hullIndex, halfedges, triangles, collinear } = this;
// degenerate case with several collinear points
if (collinear) {
const l = collinear.indexOf(i);
if (l > 0) yield collinear[l - 1];
if (l < collinear.length - 1) yield collinear[l + 1];
return;
}
const e0 = inedges[i];
if (e0 === -1) return; // coincident point
let e = e0,
p0 = -1;
do {
yield (p0 = triangles[e]);
e = e % 3 === 2 ? e - 2 : e + 1;
if (triangles[e] !== i) return; // bad triangulation
e = halfedges[e];
if (e === -1) {
const p = hull[(_hullIndex[i] + 1) % hull.length];
if (p !== p0) yield p;
return;
}
} while (e !== e0);
}
find(x, y, i = 0) {
if (((x = +x), x !== x) || ((y = +y), y !== y)) return -1;
const i0 = i;
let c;
while ((c = this._step(i, x, y)) >= 0 && c !== i && c !== i0) i = c;
return c;
}
_step(i, x, y) {
const { inedges, hull, _hullIndex, halfedges, triangles, points } = this;
if (inedges[i] === -1 || !points.length) return (i + 1) % (points.length >> 1);
let c = i;
let dc = (x - points[i * 2]) ** 2 + (y - points[i * 2 + 1]) ** 2;
const e0 = inedges[i];
let e = e0;
do {
let t = triangles[e];
const dt = (x - points[t * 2]) ** 2 + (y - points[t * 2 + 1]) ** 2;
if (dt < dc) (dc = dt), (c = t);
e = e % 3 === 2 ? e - 2 : e + 1;
if (triangles[e] !== i) break; // bad triangulation
e = halfedges[e];
if (e === -1) {
e = hull[(_hullIndex[i] + 1) % hull.length];
if (e !== t) {
if ((x - points[e * 2]) ** 2 + (y - points[e * 2 + 1]) ** 2 < dc) return e;
}
break;
}
} while (e !== e0);
return c;
}
/**
* Renders the edges of the Delaunay triangulation to the specified context.
* The specified context must implement the context.moveTo and context.lineTo methods from the CanvasPathMethods API.
*/
render(context: MoveContext & LineContext): void {
const buffer = context == null ? (context = new Path()) : undefined;
const { points, halfedges, triangles } = this;
for (let i = 0, n = halfedges.length; i < n; ++i) {
const j = halfedges[i];
if (j < i) continue;
const ti = triangles[i] * 2;
const tj = triangles[j] * 2;
context.moveTo(points[ti], points[ti + 1]);
context.lineTo(points[tj], points[tj + 1]);
}
this.renderHull(context);
return buffer && buffer.value();
}
/**
* Renders the input points of the Delaunay triangulation to the specified context as circles with the specified radius.
* If radius is not specified, it defaults to 2.
* The specified context must implement the context.moveTo and context.arc methods from the CanvasPathMethods API.
*/
renderPoints(context: MoveContext & ArcContext, r?: number): void {
const buffer = context == null ? (context = new Path()) : undefined;
const { points } = this;
for (let i = 0, n = points.length; i < n; i += 2) {
const x = points[i],
y = points[i + 1];
context.moveTo(x + r, y);
context.arc(x, y, r, 0, tau);
}
return buffer && buffer.value();
}
/**
* Renders the convex hull of the Delaunay triangulation to the specified context.
* The specified context must implement the context.moveTo and context.lineTo methods from the CanvasPathMethods API.
*/
renderHull(context: MoveContext & LineContext): void {
const buffer = context == null ? (context = new Path()) : undefined;
const { hull, points } = this;
const h = hull[0] * 2,
n = hull.length;
context.moveTo(points[h], points[h + 1]);
for (let i = 1; i < n; ++i) {
const h = 2 * hull[i];
context.lineTo(points[h], points[h + 1]);
}
context.closePath();
return buffer && buffer.value();
}
hullPolygon() {
const polygon = new Polygon();
this.renderHull(polygon);
return polygon.value();
}
/**
* Renders triangle i of the Delaunay triangulation to the specified context.
* The specified context must implement the context.moveTo, context.lineTo and context.closePath methods from the CanvasPathMethods API.
*/
renderTriangle(i: number, context: MoveContext & LineContext & ClosableContext): void {
const buffer = context == null ? (context = new Path()) : undefined;
const { points, triangles } = this;
const t0 = triangles[(i *= 3)] * 2;
const t1 = triangles[i + 1] * 2;
const t2 = triangles[i + 2] * 2;
context.moveTo(points[t0], points[t0 + 1]);
context.lineTo(points[t1], points[t1 + 1]);
context.lineTo(points[t2], points[t2 + 1]);
context.closePath();
return buffer && buffer.value();
}
*trianglePolygons() {
const { triangles } = this;
for (let i = 0, n = triangles.length / 3; i < n; ++i) {
yield this.trianglePolygon(i);
}
}
trianglePolygon(i) {
const polygon = new Polygon();
this.renderTriangle(i, polygon);
return polygon.value();
}
}
function flatArray(points, fx, fy, that) {
const n = points.length;
const array = new Float64Array(n * 2);
for (let i = 0; i < n; ++i) {
const p = points[i];
array[i * 2] = fx.call(that, p, i, points);
array[i * 2 + 1] = fy.call(that, p, i, points);
}
return array;
}
function* flatIterable(points, fx, fy, that) {
let i = 0;
for (const p of points) {
yield fx.call(that, p, i, points);
yield fy.call(that, p, i, points);
++i;
}
}