supporting-blog-content/Aryn-elasticsearch-RAG-data-preparation-demo/aryn-elasticsearch-blog-dataprep.ipynb (208 lines of code) (raw):
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "a8f66d95-a9c4-40f1-8cf8-19795653c3f3",
"metadata": {},
"outputs": [],
"source": [
"!pip install sycamore-ai[elasticsearch]\n",
"# Install the Sycamore document ETL library: https://github.com/aryn-ai/sycamore"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "60b49e1c-7055-4534-ac09-8b7ab45086d4",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import sycamore\n",
"from sycamore.context import ExecMode\n",
"from sycamore.transforms.partition import ArynPartitioner\n",
"from sycamore.transforms.extract_schema import LLMPropertyExtractor\n",
"from sycamore.transforms.summarize_images import SummarizeImages, LLMImageSummarizer\n",
"from sycamore.transforms.standardizer import (\n",
" USStateStandardizer,\n",
" DateTimeStandardizer,\n",
" ignore_errors,\n",
")\n",
"from sycamore.transforms.merge_elements import GreedySectionMerger\n",
"from sycamore.functions.tokenizer import HuggingFaceTokenizer\n",
"from sycamore.transforms.embed import SentenceTransformerEmbedder\n",
"from sycamore.llms import OpenAI, OpenAIModels\n",
"\n",
"import pyarrow.fs\n",
"\n",
"llm = OpenAI(OpenAIModels.GPT_4O_MINI)\n",
"os.environ[\"ARYN_API_KEY\"] = \"<MY-ARYN-API-KEY>\"\n",
"\n",
"paths = [\"s3://aryn-public/ntsb/\"]\n",
"\n",
"context = sycamore.init()\n",
"# Add exec_mode=ExecMode.LOCAL to .init to run without Ray\n",
"docset = context.read.binary(paths=paths, binary_format=\"pdf\")\n",
"docset = docset.materialize(\n",
" path=\"./elasticsearch-tutorial/downloaded-docset\",\n",
" source_mode=sycamore.MATERIALIZE_USE_STORED,\n",
")\n",
"# Make sure your Aryn token is accessible in the environment variable ARYN_API_KEY\n",
"partitioned_docset = docset.partition(\n",
" partitioner=ArynPartitioner(extract_table_structure=True, extract_images=True)\n",
").materialize(\n",
" path=\"./elasticsearch-tutorial/partitioned-docset\",\n",
" source_mode=sycamore.MATERIALIZE_USE_STORED,\n",
")\n",
"partitioned_docset.execute()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a755a09e-1622-400b-8b75-b3bad2981b5f",
"metadata": {},
"outputs": [],
"source": [
"schema = {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"accidentNumber\": {\"type\": \"string\"},\n",
" \"dateAndTime\": {\"type\": \"date\"},\n",
" \"location\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"US State where the incident occured\",\n",
" },\n",
" \"aircraft\": {\"type\": \"string\"},\n",
" \"aircraftDamage\": {\"type\": \"string\"},\n",
" \"injuries\": {\"type\": \"string\"},\n",
" \"definingEvent\": {\"type\": \"string\"},\n",
" },\n",
" \"required\": [\"accidentNumber\", \"dateAndTime\", \"location\", \"aircraft\"],\n",
"}\n",
"\n",
"schema_name = \"FlightAccidentReport\"\n",
"property_extractor = LLMPropertyExtractor(\n",
" llm=llm, num_of_elements=20, schema_name=schema_name, schema=schema\n",
")\n",
"\n",
"enriched_docset = (\n",
" partitioned_docset\n",
" # Extracts the properties based on the schema defined\n",
" .extract_properties(property_extractor=property_extractor)\n",
" # Summarizes images that were extracted using an LLM\n",
" .transform(SummarizeImages, summarizer=LLMImageSummarizer(llm=llm))\n",
")\n",
"\n",
"formatted_docset = (\n",
" enriched_docset\n",
" # Converts state abbreviations to their full names.\n",
" .map(\n",
" lambda doc: ignore_errors(\n",
" doc, USStateStandardizer, [\"properties\", \"entity\", \"location\"]\n",
" )\n",
" )\n",
" # Converts datetime into a common format\n",
" .map(\n",
" lambda doc: ignore_errors(\n",
" doc, DateTimeStandardizer, [\"properties\", \"entity\", \"dateAndTime\"]\n",
" )\n",
" )\n",
")\n",
"\n",
"\n",
"merger = GreedySectionMerger(\n",
" tokenizer=HuggingFaceTokenizer(\"sentence-transformers/all-MiniLM-L6-v2\"),\n",
" max_tokens=512,\n",
")\n",
"chunked_docset = formatted_docset.merge(merger=merger)\n",
"\n",
"model_name = \"thenlper/gte-small\"\n",
"\n",
"embedded_docset = (\n",
" chunked_docset.spread_properties([\"entity\", \"path\"])\n",
" .explode()\n",
" .embed(\n",
" embedder=SentenceTransformerEmbedder(batch_size=10_000, model_name=model_name)\n",
" )\n",
")\n",
"\n",
"embedded_docset = embedded_docset.materialize(\n",
" path=\"./elasticsearch-tutorial/embedded-docset\",\n",
" source_mode=sycamore.MATERIALIZE_USE_STORED,\n",
")\n",
"embedded_docset.execute()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b9321d7e-e812-41ac-8030-3db80c2147ec",
"metadata": {},
"outputs": [],
"source": [
"# Write to a persistent Elasticsearch Index. Note: You must have a specified elasticsearch instance running for this to work.\n",
"# For more information on how to set one up, refer to https://www.elastic.co/guide/en/elasticsearch/reference/current/install-elasticsearch.html\n",
"\n",
"url = \"http://localhost:9200\"\n",
"index_name = \"aryn-demo\"\n",
"embedded_ds.write.elasticsearch(\n",
" url=url,\n",
" index_name=index_name,\n",
" es_client_args={\"basic_auth\": (\"<YOUR-USERNAME>\", os.getenv(\"ELASTIC_PASSWORD\"))},\n",
" mappings={\n",
" \"properties\": {\n",
" \"embeddings\": {\n",
" \"type\": \"dense_vector\",\n",
" \"dims\": dimensions,\n",
" \"index\": True,\n",
" \"similarity\": \"cosine\",\n",
" },\n",
" \"properties\": {\"type\": \"object\"},\n",
" }\n",
" },\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "52970be4-7bac-455b-bcd0-868130ac61fd",
"metadata": {},
"outputs": [],
"source": [
"# Verify data has been loaded using DocSet Query to retrieve chunks\n",
"query_params = {\"match_all\": {}}\n",
"query_docs = ctx.read.elasticsearch(\n",
" url=url,\n",
" index_name=index_name,\n",
" query=query_params,\n",
" es_client_args={\"basic_auth\": (\"<YOUR-USERNAME>\", os.getenv(\"ELASTIC_PASSWORD\"))},\n",
")\n",
"query_docs.show(show_embedding=False)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}