supporting-blog-content/Aryn-elasticsearch-RAG-data-preparation-demo/aryn-elasticsearch-blog-dataprep.ipynb (208 lines of code) (raw):

{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "a8f66d95-a9c4-40f1-8cf8-19795653c3f3", "metadata": {}, "outputs": [], "source": [ "!pip install sycamore-ai[elasticsearch]\n", "# Install the Sycamore document ETL library: https://github.com/aryn-ai/sycamore" ] }, { "cell_type": "code", "execution_count": null, "id": "60b49e1c-7055-4534-ac09-8b7ab45086d4", "metadata": {}, "outputs": [], "source": [ "import os\n", "import sycamore\n", "from sycamore.context import ExecMode\n", "from sycamore.transforms.partition import ArynPartitioner\n", "from sycamore.transforms.extract_schema import LLMPropertyExtractor\n", "from sycamore.transforms.summarize_images import SummarizeImages, LLMImageSummarizer\n", "from sycamore.transforms.standardizer import (\n", " USStateStandardizer,\n", " DateTimeStandardizer,\n", " ignore_errors,\n", ")\n", "from sycamore.transforms.merge_elements import GreedySectionMerger\n", "from sycamore.functions.tokenizer import HuggingFaceTokenizer\n", "from sycamore.transforms.embed import SentenceTransformerEmbedder\n", "from sycamore.llms import OpenAI, OpenAIModels\n", "\n", "import pyarrow.fs\n", "\n", "llm = OpenAI(OpenAIModels.GPT_4O_MINI)\n", "os.environ[\"ARYN_API_KEY\"] = \"<MY-ARYN-API-KEY>\"\n", "\n", "paths = [\"s3://aryn-public/ntsb/\"]\n", "\n", "context = sycamore.init()\n", "# Add exec_mode=ExecMode.LOCAL to .init to run without Ray\n", "docset = context.read.binary(paths=paths, binary_format=\"pdf\")\n", "docset = docset.materialize(\n", " path=\"./elasticsearch-tutorial/downloaded-docset\",\n", " source_mode=sycamore.MATERIALIZE_USE_STORED,\n", ")\n", "# Make sure your Aryn token is accessible in the environment variable ARYN_API_KEY\n", "partitioned_docset = docset.partition(\n", " partitioner=ArynPartitioner(extract_table_structure=True, extract_images=True)\n", ").materialize(\n", " path=\"./elasticsearch-tutorial/partitioned-docset\",\n", " source_mode=sycamore.MATERIALIZE_USE_STORED,\n", ")\n", "partitioned_docset.execute()" ] }, { "cell_type": "code", "execution_count": null, "id": "a755a09e-1622-400b-8b75-b3bad2981b5f", "metadata": {}, "outputs": [], "source": [ "schema = {\n", " \"type\": \"object\",\n", " \"properties\": {\n", " \"accidentNumber\": {\"type\": \"string\"},\n", " \"dateAndTime\": {\"type\": \"date\"},\n", " \"location\": {\n", " \"type\": \"string\",\n", " \"description\": \"US State where the incident occured\",\n", " },\n", " \"aircraft\": {\"type\": \"string\"},\n", " \"aircraftDamage\": {\"type\": \"string\"},\n", " \"injuries\": {\"type\": \"string\"},\n", " \"definingEvent\": {\"type\": \"string\"},\n", " },\n", " \"required\": [\"accidentNumber\", \"dateAndTime\", \"location\", \"aircraft\"],\n", "}\n", "\n", "schema_name = \"FlightAccidentReport\"\n", "property_extractor = LLMPropertyExtractor(\n", " llm=llm, num_of_elements=20, schema_name=schema_name, schema=schema\n", ")\n", "\n", "enriched_docset = (\n", " partitioned_docset\n", " # Extracts the properties based on the schema defined\n", " .extract_properties(property_extractor=property_extractor)\n", " # Summarizes images that were extracted using an LLM\n", " .transform(SummarizeImages, summarizer=LLMImageSummarizer(llm=llm))\n", ")\n", "\n", "formatted_docset = (\n", " enriched_docset\n", " # Converts state abbreviations to their full names.\n", " .map(\n", " lambda doc: ignore_errors(\n", " doc, USStateStandardizer, [\"properties\", \"entity\", \"location\"]\n", " )\n", " )\n", " # Converts datetime into a common format\n", " .map(\n", " lambda doc: ignore_errors(\n", " doc, DateTimeStandardizer, [\"properties\", \"entity\", \"dateAndTime\"]\n", " )\n", " )\n", ")\n", "\n", "\n", "merger = GreedySectionMerger(\n", " tokenizer=HuggingFaceTokenizer(\"sentence-transformers/all-MiniLM-L6-v2\"),\n", " max_tokens=512,\n", ")\n", "chunked_docset = formatted_docset.merge(merger=merger)\n", "\n", "model_name = \"thenlper/gte-small\"\n", "\n", "embedded_docset = (\n", " chunked_docset.spread_properties([\"entity\", \"path\"])\n", " .explode()\n", " .embed(\n", " embedder=SentenceTransformerEmbedder(batch_size=10_000, model_name=model_name)\n", " )\n", ")\n", "\n", "embedded_docset = embedded_docset.materialize(\n", " path=\"./elasticsearch-tutorial/embedded-docset\",\n", " source_mode=sycamore.MATERIALIZE_USE_STORED,\n", ")\n", "embedded_docset.execute()" ] }, { "cell_type": "code", "execution_count": null, "id": "b9321d7e-e812-41ac-8030-3db80c2147ec", "metadata": {}, "outputs": [], "source": [ "# Write to a persistent Elasticsearch Index. Note: You must have a specified elasticsearch instance running for this to work.\n", "# For more information on how to set one up, refer to https://www.elastic.co/guide/en/elasticsearch/reference/current/install-elasticsearch.html\n", "\n", "url = \"http://localhost:9200\"\n", "index_name = \"aryn-demo\"\n", "embedded_ds.write.elasticsearch(\n", " url=url,\n", " index_name=index_name,\n", " es_client_args={\"basic_auth\": (\"<YOUR-USERNAME>\", os.getenv(\"ELASTIC_PASSWORD\"))},\n", " mappings={\n", " \"properties\": {\n", " \"embeddings\": {\n", " \"type\": \"dense_vector\",\n", " \"dims\": dimensions,\n", " \"index\": True,\n", " \"similarity\": \"cosine\",\n", " },\n", " \"properties\": {\"type\": \"object\"},\n", " }\n", " },\n", ")" ] }, { "cell_type": "code", "execution_count": null, "id": "52970be4-7bac-455b-bcd0-868130ac61fd", "metadata": {}, "outputs": [], "source": [ "# Verify data has been loaded using DocSet Query to retrieve chunks\n", "query_params = {\"match_all\": {}}\n", "query_docs = ctx.read.elasticsearch(\n", " url=url,\n", " index_name=index_name,\n", " query=query_params,\n", " es_client_args={\"basic_auth\": (\"<YOUR-USERNAME>\", os.getenv(\"ELASTIC_PASSWORD\"))},\n", ")\n", "query_docs.show(show_embedding=False)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.6" } }, "nbformat": 4, "nbformat_minor": 5 }