supporting-blog-content/ElasticDocs_GPT/elasticdocs_gpt.py (76 lines of code) (raw):
import os
import streamlit as st
import openai
from elasticsearch import Elasticsearch
# This code is part of an Elastic Blog showing how to combine
# Elasticsearch's search relevancy power with
# OpenAI's GPT's Question Answering power
# https://www.elastic.co/blog/chatgpt-elasticsearch-openai-meets-private-data
# Code is presented for demo purposes but should not be used in production
# You may encounter exceptions which are not handled in the code
# Required Environment Variables
# openai_api - OpenAI API Key
# cloud_id - Elastic Cloud Deployment ID
# cloud_user - Elasticsearch Cluster User
# cloud_pass - Elasticsearch User Password
openai.api_key = os.environ["openai_api"]
model = "gpt-3.5-turbo-0301"
# Connect to Elastic Cloud cluster
def es_connect(cid, user, passwd):
es = Elasticsearch(cloud_id=cid, http_auth=(user, passwd))
return es
# Search ElasticSearch index and return body and URL of the result
def search(query_text):
cid = os.environ["cloud_id"]
cp = os.environ["cloud_pass"]
cu = os.environ["cloud_user"]
es = es_connect(cid, cu, cp)
# Elasticsearch query (BM25) and kNN configuration for hybrid search
query = {
"bool": {
"must": [{"match": {"title": {"query": query_text, "boost": 1}}}],
"filter": [{"exists": {"field": "title-vector"}}],
}
}
knn = {
"field": "title-vector",
"k": 1,
"num_candidates": 20,
"query_vector_builder": {
"text_embedding": {
"model_id": "sentence-transformers__all-distilroberta-v1",
"model_text": query_text,
}
},
"boost": 24,
}
fields = ["title", "body_content", "url"]
index = "search-elastic-docs"
resp = es.search(
index=index, query=query, knn=knn, fields=fields, size=1, source=False
)
body = resp["hits"]["hits"][0]["fields"]["body_content"][0]
url = resp["hits"]["hits"][0]["fields"]["url"][0]
return body, url
def truncate_text(text, max_tokens):
tokens = text.split()
if len(tokens) <= max_tokens:
return text
return " ".join(tokens[:max_tokens])
# Generate a response from ChatGPT based on the given prompt
def chat_gpt(
prompt,
model="gpt-3.5-turbo",
max_tokens=1024,
max_context_tokens=4000,
safety_margin=5,
):
# Truncate the prompt content to fit within the model's context length
truncated_prompt = truncate_text(
prompt, max_context_tokens - max_tokens - safety_margin
)
response = openai.ChatCompletion.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": truncated_prompt},
],
)
return response["choices"][0]["message"]["content"]
st.title("ElasticDocs GPT")
# Main chat form
with st.form("chat_form"):
query = st.text_input("You: ")
submit_button = st.form_submit_button("Send")
# Generate and display response on form submission
negResponse = "I'm unable to answer the question based on the information I have from Elastic Docs."
if submit_button:
resp, url = search(query)
prompt = f"Answer this question: {query}\nUsing only the information from this Elastic Doc: {resp}\nIf the answer is not contained in the supplied doc reply '{negResponse}' and nothing else"
answer = chat_gpt(prompt)
if negResponse in answer:
st.write(f"ChatGPT: {answer.strip()}")
else:
st.write(f"ChatGPT: {answer.strip()}\n\nDocs: {url}")