rally-custom/custom_tracks/elasticsearch/so_vector/track.py [24:47]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def compute_percentile(data: List[Any], percentile):
    size = len(data)
    if size <= 0:
        return None
    sorted_data = sorted(data)
    index = int(round(percentile * size / 100)) - 1
    return sorted_data[max(min(index, size - 1), 0)]


def load_query_vectors(queries_file) -> Dict[int, List[float]]:
    if not (os.path.exists(queries_file) and os.path.isfile(queries_file)):
        raise ValueError(f"Provided queries file '{queries_file}' does not exist or is not a file")
    query_vectors: Dict[int, List[float]]
    with open(queries_file, "r") as f:
        logger.debug(f"Reading query vectors from '{queries_file}'")
        lines = f.readlines()
        query_vectors = {_index: json.loads(vector) for _index, vector in enumerate(lines)}
        logger.debug(f"Finished reading query vectors from '{queries_file}'")
    return query_vectors

async def extract_exact_neighbors(
    query_vector: List[float], index: str, max_size: int, vector_field: str, request_cache: bool, client
) -> List[str]:
    script_query = {
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



rally-custom/custom_tracks/opensearch/openai_vector/track.py [16:40]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def compute_percentile(data: List[Any], percentile):
    size = len(data)
    if size <= 0:
        return None
    sorted_data = sorted(data)
    index = int(round(percentile * size / 100)) - 1
    return sorted_data[max(min(index, size - 1), 0)]


def load_query_vectors(queries_file) -> Dict[int, List[float]]:
    if not (os.path.exists(queries_file) and os.path.isfile(queries_file)):
        raise ValueError(f"Provided queries file '{queries_file}' does not exist or is not a file")
    query_vectors: Dict[int, List[float]]
    with open(queries_file, "r") as f:
        logger.debug(f"Reading query vectors from '{queries_file}'")
        lines = f.readlines()
        query_vectors = {_index: json.loads(vector) for _index, vector in enumerate(lines)}
        logger.debug(f"Finished reading query vectors from '{queries_file}'")
    return query_vectors


async def extract_exact_neighbors(
    query_vector: List[float], index: str, max_size: int, vector_field: str, request_cache: bool, client
) -> List[str]:
    script_query = {
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



