elasticsearch/_async/client/cat.py [1496:1673]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self,
        *,
        model_id: t.Optional[str] = None,
        allow_no_match: t.Optional[bool] = None,
        bytes: t.Optional[
            t.Union[str, t.Literal["b", "gb", "kb", "mb", "pb", "tb"]]
        ] = None,
        error_trace: t.Optional[bool] = None,
        filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
        format: t.Optional[str] = None,
        from_: t.Optional[int] = None,
        h: t.Optional[
            t.Union[
                t.Sequence[
                    t.Union[
                        str,
                        t.Literal[
                            "create_time",
                            "created_by",
                            "data_frame_analytics_id",
                            "description",
                            "heap_size",
                            "id",
                            "ingest.count",
                            "ingest.current",
                            "ingest.failed",
                            "ingest.pipelines",
                            "ingest.time",
                            "license",
                            "operations",
                            "version",
                        ],
                    ]
                ],
                t.Union[
                    str,
                    t.Literal[
                        "create_time",
                        "created_by",
                        "data_frame_analytics_id",
                        "description",
                        "heap_size",
                        "id",
                        "ingest.count",
                        "ingest.current",
                        "ingest.failed",
                        "ingest.pipelines",
                        "ingest.time",
                        "license",
                        "operations",
                        "version",
                    ],
                ],
            ]
        ] = None,
        help: t.Optional[bool] = None,
        human: t.Optional[bool] = None,
        pretty: t.Optional[bool] = None,
        s: t.Optional[
            t.Union[
                t.Sequence[
                    t.Union[
                        str,
                        t.Literal[
                            "create_time",
                            "created_by",
                            "data_frame_analytics_id",
                            "description",
                            "heap_size",
                            "id",
                            "ingest.count",
                            "ingest.current",
                            "ingest.failed",
                            "ingest.pipelines",
                            "ingest.time",
                            "license",
                            "operations",
                            "version",
                        ],
                    ]
                ],
                t.Union[
                    str,
                    t.Literal[
                        "create_time",
                        "created_by",
                        "data_frame_analytics_id",
                        "description",
                        "heap_size",
                        "id",
                        "ingest.count",
                        "ingest.current",
                        "ingest.failed",
                        "ingest.pipelines",
                        "ingest.time",
                        "license",
                        "operations",
                        "version",
                    ],
                ],
            ]
        ] = None,
        size: t.Optional[int] = None,
        time: t.Optional[
            t.Union[str, t.Literal["d", "h", "m", "micros", "ms", "nanos", "s"]]
        ] = None,
        v: t.Optional[bool] = None,
    ) -> t.Union[ObjectApiResponse[t.Any], TextApiResponse]:
        """
        .. raw:: html

          <p>Get trained models.</p>
          <p>Get configuration and usage information about inference trained models.</p>
          <p>IMPORTANT: CAT APIs are only intended for human consumption using the Kibana
          console or command line. They are not intended for use by applications. For
          application consumption, use the get trained models statistics API.</p>


        `<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-cat-ml-trained-models>`_

        :param model_id: A unique identifier for the trained model.
        :param allow_no_match: Specifies what to do when the request: contains wildcard
            expressions and there are no models that match; contains the `_all` string
            or no identifiers and there are no matches; contains wildcard expressions
            and there are only partial matches. If `true`, the API returns an empty array
            when there are no matches and the subset of results when there are partial
            matches. If `false`, the API returns a 404 status code when there are no
            matches or only partial matches.
        :param bytes: The unit used to display byte values.
        :param format: Specifies the format to return the columnar data in, can be set
            to `text`, `json`, `cbor`, `yaml`, or `smile`.
        :param from_: Skips the specified number of transforms.
        :param h: A comma-separated list of column names to display.
        :param help: When set to `true` will output available columns. This option can't
            be combined with any other query string option.
        :param s: A comma-separated list of column names or aliases used to sort the
            response.
        :param size: The maximum number of transforms to display.
        :param time: Unit used to display time values.
        :param v: When set to `true` will enable verbose output.
        """
        __path_parts: t.Dict[str, str]
        if model_id not in SKIP_IN_PATH:
            __path_parts = {"model_id": _quote(model_id)}
            __path = f'/_cat/ml/trained_models/{__path_parts["model_id"]}'
        else:
            __path_parts = {}
            __path = "/_cat/ml/trained_models"
        __query: t.Dict[str, t.Any] = {}
        if allow_no_match is not None:
            __query["allow_no_match"] = allow_no_match
        if bytes is not None:
            __query["bytes"] = bytes
        if error_trace is not None:
            __query["error_trace"] = error_trace
        if filter_path is not None:
            __query["filter_path"] = filter_path
        if format is not None:
            __query["format"] = format
        if from_ is not None:
            __query["from"] = from_
        if h is not None:
            __query["h"] = h
        if help is not None:
            __query["help"] = help
        if human is not None:
            __query["human"] = human
        if pretty is not None:
            __query["pretty"] = pretty
        if s is not None:
            __query["s"] = s
        if size is not None:
            __query["size"] = size
        if time is not None:
            __query["time"] = time
        if v is not None:
            __query["v"] = v
        __headers = {"accept": "text/plain,application/json"}
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



elasticsearch/_sync/client/cat.py [1496:1673]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self,
        *,
        model_id: t.Optional[str] = None,
        allow_no_match: t.Optional[bool] = None,
        bytes: t.Optional[
            t.Union[str, t.Literal["b", "gb", "kb", "mb", "pb", "tb"]]
        ] = None,
        error_trace: t.Optional[bool] = None,
        filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
        format: t.Optional[str] = None,
        from_: t.Optional[int] = None,
        h: t.Optional[
            t.Union[
                t.Sequence[
                    t.Union[
                        str,
                        t.Literal[
                            "create_time",
                            "created_by",
                            "data_frame_analytics_id",
                            "description",
                            "heap_size",
                            "id",
                            "ingest.count",
                            "ingest.current",
                            "ingest.failed",
                            "ingest.pipelines",
                            "ingest.time",
                            "license",
                            "operations",
                            "version",
                        ],
                    ]
                ],
                t.Union[
                    str,
                    t.Literal[
                        "create_time",
                        "created_by",
                        "data_frame_analytics_id",
                        "description",
                        "heap_size",
                        "id",
                        "ingest.count",
                        "ingest.current",
                        "ingest.failed",
                        "ingest.pipelines",
                        "ingest.time",
                        "license",
                        "operations",
                        "version",
                    ],
                ],
            ]
        ] = None,
        help: t.Optional[bool] = None,
        human: t.Optional[bool] = None,
        pretty: t.Optional[bool] = None,
        s: t.Optional[
            t.Union[
                t.Sequence[
                    t.Union[
                        str,
                        t.Literal[
                            "create_time",
                            "created_by",
                            "data_frame_analytics_id",
                            "description",
                            "heap_size",
                            "id",
                            "ingest.count",
                            "ingest.current",
                            "ingest.failed",
                            "ingest.pipelines",
                            "ingest.time",
                            "license",
                            "operations",
                            "version",
                        ],
                    ]
                ],
                t.Union[
                    str,
                    t.Literal[
                        "create_time",
                        "created_by",
                        "data_frame_analytics_id",
                        "description",
                        "heap_size",
                        "id",
                        "ingest.count",
                        "ingest.current",
                        "ingest.failed",
                        "ingest.pipelines",
                        "ingest.time",
                        "license",
                        "operations",
                        "version",
                    ],
                ],
            ]
        ] = None,
        size: t.Optional[int] = None,
        time: t.Optional[
            t.Union[str, t.Literal["d", "h", "m", "micros", "ms", "nanos", "s"]]
        ] = None,
        v: t.Optional[bool] = None,
    ) -> t.Union[ObjectApiResponse[t.Any], TextApiResponse]:
        """
        .. raw:: html

          <p>Get trained models.</p>
          <p>Get configuration and usage information about inference trained models.</p>
          <p>IMPORTANT: CAT APIs are only intended for human consumption using the Kibana
          console or command line. They are not intended for use by applications. For
          application consumption, use the get trained models statistics API.</p>


        `<https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-cat-ml-trained-models>`_

        :param model_id: A unique identifier for the trained model.
        :param allow_no_match: Specifies what to do when the request: contains wildcard
            expressions and there are no models that match; contains the `_all` string
            or no identifiers and there are no matches; contains wildcard expressions
            and there are only partial matches. If `true`, the API returns an empty array
            when there are no matches and the subset of results when there are partial
            matches. If `false`, the API returns a 404 status code when there are no
            matches or only partial matches.
        :param bytes: The unit used to display byte values.
        :param format: Specifies the format to return the columnar data in, can be set
            to `text`, `json`, `cbor`, `yaml`, or `smile`.
        :param from_: Skips the specified number of transforms.
        :param h: A comma-separated list of column names to display.
        :param help: When set to `true` will output available columns. This option can't
            be combined with any other query string option.
        :param s: A comma-separated list of column names or aliases used to sort the
            response.
        :param size: The maximum number of transforms to display.
        :param time: Unit used to display time values.
        :param v: When set to `true` will enable verbose output.
        """
        __path_parts: t.Dict[str, str]
        if model_id not in SKIP_IN_PATH:
            __path_parts = {"model_id": _quote(model_id)}
            __path = f'/_cat/ml/trained_models/{__path_parts["model_id"]}'
        else:
            __path_parts = {}
            __path = "/_cat/ml/trained_models"
        __query: t.Dict[str, t.Any] = {}
        if allow_no_match is not None:
            __query["allow_no_match"] = allow_no_match
        if bytes is not None:
            __query["bytes"] = bytes
        if error_trace is not None:
            __query["error_trace"] = error_trace
        if filter_path is not None:
            __query["filter_path"] = filter_path
        if format is not None:
            __query["format"] = format
        if from_ is not None:
            __query["from"] = from_
        if h is not None:
            __query["h"] = h
        if help is not None:
            __query["help"] = help
        if human is not None:
            __query["human"] = human
        if pretty is not None:
            __query["pretty"] = pretty
        if s is not None:
            __query["s"] = s
        if size is not None:
            __query["size"] = size
        if time is not None:
            __query["time"] = time
        if v is not None:
            __query["v"] = v
        __headers = {"accept": "text/plain,application/json"}
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



