def get_python_type()

in utils/dsl-generator.py [0:0]


    def get_python_type(self, schema_type, for_response=False):
        """Obtain Python typing details for a given schema type

        This method returns a tuple. The first element is a string with the
        Python type hint. The second element is a dictionary with Python DSL
        specific typing details to be stored in the DslBase._param_defs
        attribute (or None if the type does not need to be in _param_defs).

        When `for_response` is `False`, any new interfaces that are discovered
        are registered to be generated in "request" style, with alternative
        Dict type hints and default values. If `for_response` is `True`,
        interfaces are generated just with their declared type, without
        Dict alternative and without defaults, to help type checkers be more
        effective at parsing response expressions.
        """
        if schema_type["kind"] == "instance_of":
            type_name = schema_type["type"]
            if type_name["namespace"] in ["_types", "internal", "_builtins"]:
                if type_name["name"] in ["integer", "uint", "long", "ulong"]:
                    return "int", None
                elif type_name["name"] in ["number", "float", "double"]:
                    return "float", None
                elif type_name["name"] == "string":
                    return "str", None
                elif type_name["name"] == "boolean":
                    return "bool", None
                elif type_name["name"] == "binary":
                    return "bytes", None
                elif type_name["name"] == "null":
                    return "None", None
                elif type_name["name"] == "Field":
                    if for_response:
                        return "str", None
                    else:
                        return 'Union[str, "InstrumentedField"]', None
                else:
                    # not an instance of a native type, so we get the type and try again
                    return self.get_python_type(
                        self.find_type(type_name["name"], type_name["namespace"]),
                        for_response=for_response,
                    )
            elif (
                type_name["namespace"] == "_types.query_dsl"
                and type_name["name"] == "QueryContainer"
            ):
                # QueryContainer maps to the DSL's Query class
                return "Query", {"type": "query"}
            elif (
                type_name["namespace"] == "_global.search._types"
                and type_name["name"] == "SearchRequestBody"
            ):
                # we currently do not provide specific typing for this one
                return "Dict[str, Any]", None
            elif (
                type_name["namespace"] == "_types.query_dsl"
                and type_name["name"] == "FunctionScoreContainer"
            ):
                # FunctionScoreContainer maps to the DSL's ScoreFunction class
                return "ScoreFunction", {"type": "score_function"}
            elif (
                type_name["namespace"] == "_types.aggregations"
                and type_name["name"] == "Buckets"
            ):
                if for_response:
                    return "Union[Sequence[Any], Dict[str, Any]]", None
                else:
                    return "Dict[str, Query]", {"type": "query", "hash": True}
            elif (
                type_name["namespace"] == "_types.aggregations"
                and type_name["name"] == "CompositeAggregationSource"
            ):
                # CompositeAggreagationSource maps to the DSL's Agg class
                return "Agg[_R]", None
            else:
                # for any other instances we get the type and recurse
                type_ = self.find_type(type_name["name"], type_name["namespace"])
                if type_:
                    return self.get_python_type(type_, for_response=for_response)

        elif schema_type["kind"] == "type_alias":
            # for an alias, we use the aliased type
            return self.get_python_type(schema_type["type"], for_response=for_response)

        elif schema_type["kind"] == "array_of":
            # for arrays we use Sequence[element_type]
            type_, param = self.get_python_type(
                schema_type["value"], for_response=for_response
            )
            return f"Sequence[{type_}]", {**param, "multi": True} if param else None

        elif schema_type["kind"] == "dictionary_of":
            # for dicts we use Mapping[key_type, value_type]
            key_type, key_param = self.get_python_type(
                schema_type["key"], for_response=for_response
            )
            value_type, value_param = self.get_python_type(
                schema_type["value"], for_response=for_response
            )
            return f"Mapping[{key_type}, {value_type}]", (
                {**value_param, "hash": True} if value_param else None
            )

        elif schema_type["kind"] == "union_of":
            if (
                len(schema_type["items"]) == 2
                and schema_type["items"][0]["kind"] == "instance_of"
                and schema_type["items"][1]["kind"] == "array_of"
                and schema_type["items"][0] == schema_type["items"][1]["value"]
            ):
                # special kind of unions in the form Union[type, Sequence[type]]
                type_, param = self.get_python_type(
                    schema_type["items"][0], for_response=for_response
                )
                if schema_type["items"][0]["type"]["name"] in [
                    "CompletionSuggestOption",
                    "PhraseSuggestOption",
                    "TermSuggestOption",
                ]:
                    # for suggest types we simplify this type and return just the array form
                    return (
                        f"Sequence[{type_}]",
                        ({"type": param["type"], "multi": True} if param else None),
                    )
                else:
                    # for every other types we produce an union with the two alternatives
                    return (
                        f"Union[{type_}, Sequence[{type_}]]",
                        ({"type": param["type"], "multi": True} if param else None),
                    )
            elif (
                len(schema_type["items"]) == 2
                and schema_type["items"][0]["kind"] == "instance_of"
                and schema_type["items"][1]["kind"] == "instance_of"
                and schema_type["items"][0]["type"]
                == {"name": "T", "namespace": "_spec_utils.PipeSeparatedFlags"}
                and schema_type["items"][1]["type"]
                == {"name": "string", "namespace": "_builtins"}
            ):
                # for now we treat PipeSeparatedFlags as a special case
                if "PipeSeparatedFlags" not in self.interfaces:
                    self.interfaces.append("PipeSeparatedFlags")
                return '"types.PipeSeparatedFlags"', None
            else:
                # generic union type
                types = list(
                    dict.fromkeys(  # eliminate duplicates
                        [
                            self.get_python_type(t, for_response=for_response)
                            for t in schema_type["items"]
                        ]
                    )
                )
                if len(types) == 1:
                    return types[0]
                return "Union[" + ", ".join([type_ for type_, _ in types]) + "]", None

        elif schema_type["kind"] == "enum":
            # enums are mapped to Literal[member, ...]
            t = (
                "Literal["
                + ", ".join(
                    [f"\"{member['name']}\"" for member in schema_type["members"]]
                )
                + "]"
            )
            if {"name": "true"} in schema_type["members"] and {
                "name": "false"
            } in schema_type["members"]:
                # this is a boolean that was later upgraded to an enum, so we
                # should also allow bools
                t = f"Union[{t}, bool]"
            return t, None

        elif schema_type["kind"] == "interface":
            if schema_type["name"]["namespace"] == "_types.query_dsl":
                # handle specific DSL classes explicitly to map to existing
                # Python DSL classes
                if schema_type["name"]["name"].endswith("RangeQuery"):
                    return '"wrappers.Range[Any]"', None
                elif schema_type["name"]["name"].endswith("ScoreFunction"):
                    # When dropping Python 3.8, use `removesuffix("Function")` instead
                    name = schema_type["name"]["name"][:-8]
                    return f'"function.{name}"', None
                elif schema_type["name"]["name"].endswith("DecayFunction"):
                    return '"function.DecayFunction"', None
                elif schema_type["name"]["name"].endswith("Function"):
                    return f"\"function.{schema_type['name']['name']}\"", None
            elif schema_type["name"]["namespace"] == "_types.analysis" and schema_type[
                "name"
            ]["name"].endswith("Analyzer"):
                # not expanding analyzers at this time, maybe in the future
                return "str, Dict[str, Any]", None
            elif schema_type["name"]["namespace"] == "_types.aggregations":
                if (
                    schema_type["name"]["name"].endswith("AggregationRange")
                    or schema_type["name"]["name"] == "DateRangeExpression"
                ) and schema_type["name"]["name"] != "IpRangeAggregationRange":
                    return '"wrappers.AggregationRange"', None

            # to handle other interfaces we generate a type of the same name
            # and add the interface to the interfaces.py module
            if schema_type["name"]["name"] not in self.interfaces:
                self.interfaces.append(schema_type["name"]["name"])
                if for_response:
                    self.response_interfaces.append(schema_type["name"]["name"])
            return f"\"types.{schema_type['name']['name']}\"", None
        elif schema_type["kind"] == "user_defined_value":
            # user_defined_value maps to Python's Any type
            return "Any", None

        raise RuntimeError(f"Cannot find Python type for {schema_type}")