elasticsearch/helpers/vectorstore/_utils.py (77 lines of code) (raw):
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from enum import Enum
from typing import TYPE_CHECKING, List, Union
if TYPE_CHECKING:
import numpy as np
import numpy.typing as npt
Matrix = Union[
List[List[float]], List["npt.NDArray[np.float64]"], "npt.NDArray[np.float64]"
]
class DistanceMetric(str, Enum):
"""Enumerator of all Elasticsearch dense vector distance metrics."""
COSINE = "COSINE"
DOT_PRODUCT = "DOT_PRODUCT"
EUCLIDEAN_DISTANCE = "EUCLIDEAN_DISTANCE"
MAX_INNER_PRODUCT = "MAX_INNER_PRODUCT"
def maximal_marginal_relevance(
query_embedding: List[float],
embedding_list: List[List[float]],
lambda_mult: float = 0.5,
k: int = 4,
) -> List[int]:
"""Calculate maximal marginal relevance."""
try:
import numpy as np
except ModuleNotFoundError as e:
_raise_missing_mmr_deps_error(e)
query_embedding_arr = np.array(query_embedding)
if min(k, len(embedding_list)) <= 0:
return []
if query_embedding_arr.ndim == 1:
query_embedding_arr = np.expand_dims(query_embedding_arr, axis=0)
similarity_to_query = _cosine_similarity(query_embedding_arr, embedding_list)[0]
most_similar = int(np.argmax(similarity_to_query))
idxs = [most_similar]
selected = np.array([embedding_list[most_similar]])
while len(idxs) < min(k, len(embedding_list)):
best_score = -np.inf
idx_to_add = -1
similarity_to_selected = _cosine_similarity(embedding_list, selected)
for i, query_score in enumerate(similarity_to_query):
if i in idxs:
continue
redundant_score = max(similarity_to_selected[i])
equation_score = (
lambda_mult * query_score - (1 - lambda_mult) * redundant_score
)
if equation_score > best_score:
best_score = equation_score
idx_to_add = i
idxs.append(idx_to_add)
selected = np.append(selected, [embedding_list[idx_to_add]], axis=0)
return idxs
def _cosine_similarity(X: Matrix, Y: Matrix) -> "npt.NDArray[np.float64]":
"""Row-wise cosine similarity between two equal-width matrices."""
try:
import numpy as np
import simsimd as simd
except ModuleNotFoundError as e:
_raise_missing_mmr_deps_error(e)
if len(X) == 0 or len(Y) == 0:
return np.array([])
X = np.array(X)
Y = np.array(Y)
if X.shape[1] != Y.shape[1]:
raise ValueError(
f"Number of columns in X and Y must be the same. X has shape {X.shape} "
f"and Y has shape {Y.shape}."
)
X = np.array(X, dtype=np.float32)
Y = np.array(Y, dtype=np.float32)
Z = 1 - np.array(simd.cdist(X, Y, metric="cosine"))
if isinstance(Z, float):
return np.array([Z])
return np.array(Z)
def _raise_missing_mmr_deps_error(parent_error: ModuleNotFoundError) -> None:
import sys
raise ModuleNotFoundError(
f"Failed to compute maximal marginal relevance because the required "
f"module '{parent_error.name}' is missing. You can install it by running: "
f"'{sys.executable} -m pip install elasticsearch[vectorstore_mmr]'"
) from parent_error