def ml_jobs()

in elasticsearch_serverless/_sync/client/cat.py [0:0]


    def ml_jobs(
        self,
        *,
        job_id: t.Optional[str] = None,
        allow_no_match: t.Optional[bool] = None,
        bytes: t.Optional[
            t.Union[str, t.Literal["b", "gb", "kb", "mb", "pb", "tb"]]
        ] = None,
        error_trace: t.Optional[bool] = None,
        filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
        format: t.Optional[str] = None,
        h: t.Optional[
            t.Union[
                t.Sequence[
                    t.Union[
                        str,
                        t.Literal[
                            "assignment_explanation",
                            "buckets.count",
                            "buckets.time.exp_avg",
                            "buckets.time.exp_avg_hour",
                            "buckets.time.max",
                            "buckets.time.min",
                            "buckets.time.total",
                            "data.buckets",
                            "data.earliest_record",
                            "data.empty_buckets",
                            "data.input_bytes",
                            "data.input_fields",
                            "data.input_records",
                            "data.invalid_dates",
                            "data.last",
                            "data.last_empty_bucket",
                            "data.last_sparse_bucket",
                            "data.latest_record",
                            "data.missing_fields",
                            "data.out_of_order_timestamps",
                            "data.processed_fields",
                            "data.processed_records",
                            "data.sparse_buckets",
                            "forecasts.memory.avg",
                            "forecasts.memory.max",
                            "forecasts.memory.min",
                            "forecasts.memory.total",
                            "forecasts.records.avg",
                            "forecasts.records.max",
                            "forecasts.records.min",
                            "forecasts.records.total",
                            "forecasts.time.avg",
                            "forecasts.time.max",
                            "forecasts.time.min",
                            "forecasts.time.total",
                            "forecasts.total",
                            "id",
                            "model.bucket_allocation_failures",
                            "model.by_fields",
                            "model.bytes",
                            "model.bytes_exceeded",
                            "model.categorization_status",
                            "model.categorized_doc_count",
                            "model.dead_category_count",
                            "model.failed_category_count",
                            "model.frequent_category_count",
                            "model.log_time",
                            "model.memory_limit",
                            "model.memory_status",
                            "model.over_fields",
                            "model.partition_fields",
                            "model.rare_category_count",
                            "model.timestamp",
                            "model.total_category_count",
                            "node.address",
                            "node.ephemeral_id",
                            "node.id",
                            "node.name",
                            "opened_time",
                            "state",
                        ],
                    ]
                ],
                t.Union[
                    str,
                    t.Literal[
                        "assignment_explanation",
                        "buckets.count",
                        "buckets.time.exp_avg",
                        "buckets.time.exp_avg_hour",
                        "buckets.time.max",
                        "buckets.time.min",
                        "buckets.time.total",
                        "data.buckets",
                        "data.earliest_record",
                        "data.empty_buckets",
                        "data.input_bytes",
                        "data.input_fields",
                        "data.input_records",
                        "data.invalid_dates",
                        "data.last",
                        "data.last_empty_bucket",
                        "data.last_sparse_bucket",
                        "data.latest_record",
                        "data.missing_fields",
                        "data.out_of_order_timestamps",
                        "data.processed_fields",
                        "data.processed_records",
                        "data.sparse_buckets",
                        "forecasts.memory.avg",
                        "forecasts.memory.max",
                        "forecasts.memory.min",
                        "forecasts.memory.total",
                        "forecasts.records.avg",
                        "forecasts.records.max",
                        "forecasts.records.min",
                        "forecasts.records.total",
                        "forecasts.time.avg",
                        "forecasts.time.max",
                        "forecasts.time.min",
                        "forecasts.time.total",
                        "forecasts.total",
                        "id",
                        "model.bucket_allocation_failures",
                        "model.by_fields",
                        "model.bytes",
                        "model.bytes_exceeded",
                        "model.categorization_status",
                        "model.categorized_doc_count",
                        "model.dead_category_count",
                        "model.failed_category_count",
                        "model.frequent_category_count",
                        "model.log_time",
                        "model.memory_limit",
                        "model.memory_status",
                        "model.over_fields",
                        "model.partition_fields",
                        "model.rare_category_count",
                        "model.timestamp",
                        "model.total_category_count",
                        "node.address",
                        "node.ephemeral_id",
                        "node.id",
                        "node.name",
                        "opened_time",
                        "state",
                    ],
                ],
            ]
        ] = None,
        help: t.Optional[bool] = None,
        human: t.Optional[bool] = None,
        pretty: t.Optional[bool] = None,
        s: t.Optional[
            t.Union[
                t.Sequence[
                    t.Union[
                        str,
                        t.Literal[
                            "assignment_explanation",
                            "buckets.count",
                            "buckets.time.exp_avg",
                            "buckets.time.exp_avg_hour",
                            "buckets.time.max",
                            "buckets.time.min",
                            "buckets.time.total",
                            "data.buckets",
                            "data.earliest_record",
                            "data.empty_buckets",
                            "data.input_bytes",
                            "data.input_fields",
                            "data.input_records",
                            "data.invalid_dates",
                            "data.last",
                            "data.last_empty_bucket",
                            "data.last_sparse_bucket",
                            "data.latest_record",
                            "data.missing_fields",
                            "data.out_of_order_timestamps",
                            "data.processed_fields",
                            "data.processed_records",
                            "data.sparse_buckets",
                            "forecasts.memory.avg",
                            "forecasts.memory.max",
                            "forecasts.memory.min",
                            "forecasts.memory.total",
                            "forecasts.records.avg",
                            "forecasts.records.max",
                            "forecasts.records.min",
                            "forecasts.records.total",
                            "forecasts.time.avg",
                            "forecasts.time.max",
                            "forecasts.time.min",
                            "forecasts.time.total",
                            "forecasts.total",
                            "id",
                            "model.bucket_allocation_failures",
                            "model.by_fields",
                            "model.bytes",
                            "model.bytes_exceeded",
                            "model.categorization_status",
                            "model.categorized_doc_count",
                            "model.dead_category_count",
                            "model.failed_category_count",
                            "model.frequent_category_count",
                            "model.log_time",
                            "model.memory_limit",
                            "model.memory_status",
                            "model.over_fields",
                            "model.partition_fields",
                            "model.rare_category_count",
                            "model.timestamp",
                            "model.total_category_count",
                            "node.address",
                            "node.ephemeral_id",
                            "node.id",
                            "node.name",
                            "opened_time",
                            "state",
                        ],
                    ]
                ],
                t.Union[
                    str,
                    t.Literal[
                        "assignment_explanation",
                        "buckets.count",
                        "buckets.time.exp_avg",
                        "buckets.time.exp_avg_hour",
                        "buckets.time.max",
                        "buckets.time.min",
                        "buckets.time.total",
                        "data.buckets",
                        "data.earliest_record",
                        "data.empty_buckets",
                        "data.input_bytes",
                        "data.input_fields",
                        "data.input_records",
                        "data.invalid_dates",
                        "data.last",
                        "data.last_empty_bucket",
                        "data.last_sparse_bucket",
                        "data.latest_record",
                        "data.missing_fields",
                        "data.out_of_order_timestamps",
                        "data.processed_fields",
                        "data.processed_records",
                        "data.sparse_buckets",
                        "forecasts.memory.avg",
                        "forecasts.memory.max",
                        "forecasts.memory.min",
                        "forecasts.memory.total",
                        "forecasts.records.avg",
                        "forecasts.records.max",
                        "forecasts.records.min",
                        "forecasts.records.total",
                        "forecasts.time.avg",
                        "forecasts.time.max",
                        "forecasts.time.min",
                        "forecasts.time.total",
                        "forecasts.total",
                        "id",
                        "model.bucket_allocation_failures",
                        "model.by_fields",
                        "model.bytes",
                        "model.bytes_exceeded",
                        "model.categorization_status",
                        "model.categorized_doc_count",
                        "model.dead_category_count",
                        "model.failed_category_count",
                        "model.frequent_category_count",
                        "model.log_time",
                        "model.memory_limit",
                        "model.memory_status",
                        "model.over_fields",
                        "model.partition_fields",
                        "model.rare_category_count",
                        "model.timestamp",
                        "model.total_category_count",
                        "node.address",
                        "node.ephemeral_id",
                        "node.id",
                        "node.name",
                        "opened_time",
                        "state",
                    ],
                ],
            ]
        ] = None,
        time: t.Optional[
            t.Union[str, t.Literal["d", "h", "m", "micros", "ms", "nanos", "s"]]
        ] = None,
        v: t.Optional[bool] = None,