in elasticsearch_serverless/_sync/client/ml.py [0:0]
def put_trained_model(
self,
*,
model_id: str,
compressed_definition: t.Optional[str] = None,
defer_definition_decompression: t.Optional[bool] = None,
definition: t.Optional[t.Mapping[str, t.Any]] = None,
description: t.Optional[str] = None,
error_trace: t.Optional[bool] = None,
filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
human: t.Optional[bool] = None,
inference_config: t.Optional[t.Mapping[str, t.Any]] = None,
input: t.Optional[t.Mapping[str, t.Any]] = None,
metadata: t.Optional[t.Any] = None,
model_size_bytes: t.Optional[int] = None,
model_type: t.Optional[
t.Union[str, t.Literal["lang_ident", "pytorch", "tree_ensemble"]]
] = None,
platform_architecture: t.Optional[str] = None,
prefix_strings: t.Optional[t.Mapping[str, t.Any]] = None,
pretty: t.Optional[bool] = None,
tags: t.Optional[t.Sequence[str]] = None,
wait_for_completion: t.Optional[bool] = None,
body: t.Optional[t.Dict[str, t.Any]] = None,