def put_trained_model()

in elasticsearch_serverless/_sync/client/ml.py [0:0]


    def put_trained_model(
        self,
        *,
        model_id: str,
        compressed_definition: t.Optional[str] = None,
        defer_definition_decompression: t.Optional[bool] = None,
        definition: t.Optional[t.Mapping[str, t.Any]] = None,
        description: t.Optional[str] = None,
        error_trace: t.Optional[bool] = None,
        filter_path: t.Optional[t.Union[str, t.Sequence[str]]] = None,
        human: t.Optional[bool] = None,
        inference_config: t.Optional[t.Mapping[str, t.Any]] = None,
        input: t.Optional[t.Mapping[str, t.Any]] = None,
        metadata: t.Optional[t.Any] = None,
        model_size_bytes: t.Optional[int] = None,
        model_type: t.Optional[
            t.Union[str, t.Literal["lang_ident", "pytorch", "tree_ensemble"]]
        ] = None,
        platform_architecture: t.Optional[str] = None,
        prefix_strings: t.Optional[t.Mapping[str, t.Any]] = None,
        pretty: t.Optional[bool] = None,
        tags: t.Optional[t.Sequence[str]] = None,
        wait_for_completion: t.Optional[bool] = None,
        body: t.Optional[t.Dict[str, t.Any]] = None,