lib/elasticsearch-serverless/api/inference/put.rb (32 lines of code) (raw):

# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # Auto generated from commit f284cc16f4d4b4289bc679aa1529bb504190fe80 # @see https://github.com/elastic/elasticsearch-specification # module ElasticsearchServerless module API module Inference module Actions # Create an inference endpoint. # When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running. # After creating the endpoint, wait for the model deployment to complete before using it. # To verify the deployment status, use the get trained model statistics API. # Look for +"state": "fully_allocated"+ in the response and ensure that the +"allocation_count"+ matches the +"target_allocation_count"+. # Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources. # IMPORTANT: The inference APIs enable you to use certain services, such as built-in machine learning models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, Mistral, Azure OpenAI, Google AI Studio, Google Vertex AI, Anthropic, Watsonx.ai, or Hugging Face. # For built-in models and models uploaded through Eland, the inference APIs offer an alternative way to use and manage trained models. # However, if you do not plan to use the inference APIs to use these models or if you want to use non-NLP models, use the machine learning trained model APIs. # # @option arguments [String] :task_type The task type # @option arguments [String] :inference_id The inference Id (*Required*) # @option arguments [Hash] :headers Custom HTTP headers # @option arguments [Hash] :body inference_config # # @see https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-inference-put # def put(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'inference.put' } defined_params = [:inference_id, :task_type].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'body' missing" unless arguments[:body] raise ArgumentError, "Required argument 'inference_id' missing" unless arguments[:inference_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _task_type = arguments.delete(:task_type) _inference_id = arguments.delete(:inference_id) method = ElasticsearchServerless::API::HTTP_PUT path = if _task_type && _inference_id "_inference/#{Utils.listify(_task_type)}/#{Utils.listify(_inference_id)}" else "_inference/#{Utils.listify(_inference_id)}" end params = {} ElasticsearchServerless::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end end end end end