lib/elasticsearch-serverless/api/machine_learning/update_trained_model_deployment.rb (26 lines of code) (raw):

# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # Auto generated from commit f284cc16f4d4b4289bc679aa1529bb504190fe80 # @see https://github.com/elastic/elasticsearch-specification # module ElasticsearchServerless module API module MachineLearning module Actions # Update a trained model deployment. # # @option arguments [String] :model_id The unique identifier of the trained model. Currently, only PyTorch models are supported. (*Required*) # @option arguments [Integer] :number_of_allocations The number of model allocations on each node where the model is deployed. # All allocations on a node share the same copy of the model in memory but use # a separate set of threads to evaluate the model. # Increasing this value generally increases the throughput. # If this setting is greater than the number of hardware threads # it will automatically be changed to a value less than the number of hardware threads. Server default: 1. # @option arguments [Hash] :headers Custom HTTP headers # @option arguments [Hash] :body request body # # @see https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-update-trained-model-deployment # def update_trained_model_deployment(arguments = {}) request_opts = { endpoint: arguments[:endpoint] || 'ml.update_trained_model_deployment' } defined_params = [:model_id].each_with_object({}) do |variable, set_variables| set_variables[variable] = arguments[variable] if arguments.key?(variable) end request_opts[:defined_params] = defined_params unless defined_params.empty? raise ArgumentError, "Required argument 'model_id' missing" unless arguments[:model_id] arguments = arguments.clone headers = arguments.delete(:headers) || {} body = arguments.delete(:body) _model_id = arguments.delete(:model_id) method = ElasticsearchServerless::API::HTTP_POST path = "_ml/trained_models/#{Utils.listify(_model_id)}/deployment/_update" params = Utils.process_params(arguments) ElasticsearchServerless::API::Response.new( perform_request(method, path, params, body, headers, request_opts) ) end end end end end