lib/elasticsearch-serverless/api/machine_learning/update_trained_model_deployment.rb (26 lines of code) (raw):
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# Auto generated from commit f284cc16f4d4b4289bc679aa1529bb504190fe80
# @see https://github.com/elastic/elasticsearch-specification
#
module ElasticsearchServerless
module API
module MachineLearning
module Actions
# Update a trained model deployment.
#
# @option arguments [String] :model_id The unique identifier of the trained model. Currently, only PyTorch models are supported. (*Required*)
# @option arguments [Integer] :number_of_allocations The number of model allocations on each node where the model is deployed.
# All allocations on a node share the same copy of the model in memory but use
# a separate set of threads to evaluate the model.
# Increasing this value generally increases the throughput.
# If this setting is greater than the number of hardware threads
# it will automatically be changed to a value less than the number of hardware threads. Server default: 1.
# @option arguments [Hash] :headers Custom HTTP headers
# @option arguments [Hash] :body request body
#
# @see https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-ml-update-trained-model-deployment
#
def update_trained_model_deployment(arguments = {})
request_opts = { endpoint: arguments[:endpoint] || 'ml.update_trained_model_deployment' }
defined_params = [:model_id].each_with_object({}) do |variable, set_variables|
set_variables[variable] = arguments[variable] if arguments.key?(variable)
end
request_opts[:defined_params] = defined_params unless defined_params.empty?
raise ArgumentError, "Required argument 'model_id' missing" unless arguments[:model_id]
arguments = arguments.clone
headers = arguments.delete(:headers) || {}
body = arguments.delete(:body)
_model_id = arguments.delete(:model_id)
method = ElasticsearchServerless::API::HTTP_POST
path = "_ml/trained_models/#{Utils.listify(_model_id)}/deployment/_update"
params = Utils.process_params(arguments)
ElasticsearchServerless::API::Response.new(
perform_request(method, path, params, body, headers, request_opts)
)
end
end
end
end
end