exporter/prometheusremotewriteexporter/helper.go (86 lines of code) (raw):
// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
package prometheusremotewriteexporter // import "github.com/open-telemetry/opentelemetry-collector-contrib/exporter/prometheusremotewriteexporter"
import (
"errors"
"math"
"sort"
"github.com/prometheus/prometheus/prompb"
)
type batchTimeSeriesState struct {
// Track batch sizes sent to avoid over allocating huge buffers.
// This helps in the case where large batches are sent to avoid allocating too much unused memory
nextTimeSeriesBufferSize int
nextMetricMetadataBufferSize int
nextRequestBufferSize int
}
func newBatchTimeServicesState() *batchTimeSeriesState {
return &batchTimeSeriesState{
nextTimeSeriesBufferSize: math.MaxInt,
nextMetricMetadataBufferSize: math.MaxInt,
nextRequestBufferSize: 0,
}
}
// batchTimeSeries splits series into multiple batch write requests.
func batchTimeSeries(tsMap map[string]*prompb.TimeSeries, maxBatchByteSize int, m []*prompb.MetricMetadata, state *batchTimeSeriesState) ([]*prompb.WriteRequest, error) {
if len(tsMap) == 0 {
return nil, errors.New("invalid tsMap: cannot be empty map")
}
// Allocate a buffer size of at least 10, or twice the last # of requests we sent
requests := make([]*prompb.WriteRequest, 0, max(10, state.nextRequestBufferSize))
// Allocate a time series buffer 2x the last time series batch size or the length of the input if smaller
tsArray := make([]prompb.TimeSeries, 0, min(state.nextTimeSeriesBufferSize, len(tsMap)))
sizeOfCurrentBatch := 0
i := 0
for _, v := range tsMap {
sizeOfSeries := v.Size()
if sizeOfCurrentBatch+sizeOfSeries >= maxBatchByteSize {
state.nextTimeSeriesBufferSize = max(10, 2*len(tsArray))
wrapped := convertTimeseriesToRequest(tsArray)
requests = append(requests, wrapped)
tsArray = make([]prompb.TimeSeries, 0, min(state.nextTimeSeriesBufferSize, len(tsMap)-i))
sizeOfCurrentBatch = 0
}
tsArray = append(tsArray, *v)
sizeOfCurrentBatch += sizeOfSeries
i++
}
if len(tsArray) != 0 {
wrapped := convertTimeseriesToRequest(tsArray)
requests = append(requests, wrapped)
}
// Allocate a metric metadata buffer 2x the last metric metadata batch size or the length of the input if smaller
mArray := make([]prompb.MetricMetadata, 0, min(state.nextMetricMetadataBufferSize, len(m)))
sizeOfCurrentBatch = 0
i = 0
for _, v := range m {
sizeOfM := v.Size()
if sizeOfCurrentBatch+sizeOfM >= maxBatchByteSize {
state.nextMetricMetadataBufferSize = max(10, 2*len(mArray))
wrapped := convertMetadataToRequest(mArray)
requests = append(requests, wrapped)
mArray = make([]prompb.MetricMetadata, 0, min(state.nextMetricMetadataBufferSize, len(m)-i))
sizeOfCurrentBatch = 0
}
mArray = append(mArray, *v)
sizeOfCurrentBatch += sizeOfM
i++
}
if len(mArray) != 0 {
wrapped := convertMetadataToRequest(mArray)
requests = append(requests, wrapped)
}
state.nextRequestBufferSize = 2 * len(requests)
return requests, nil
}
func convertTimeseriesToRequest(tsArray []prompb.TimeSeries) *prompb.WriteRequest {
// the remote_write endpoint only requires the timeseries.
// otlp defines its own way to handle metric metadata
return &prompb.WriteRequest{
// Prometheus requires time series to be sorted by Timestamp to avoid out of order problems.
// See:
// * https://github.com/open-telemetry/wg-prometheus/issues/10
// * https://github.com/open-telemetry/opentelemetry-collector/issues/2315
Timeseries: orderBySampleTimestamp(tsArray),
}
}
func convertMetadataToRequest(m []prompb.MetricMetadata) *prompb.WriteRequest {
return &prompb.WriteRequest{
Metadata: m,
}
}
func orderBySampleTimestamp(tsArray []prompb.TimeSeries) []prompb.TimeSeries {
for i := range tsArray {
sL := tsArray[i].Samples
sort.Slice(sL, func(i, j int) bool {
return sL[i].Timestamp < sL[j].Timestamp
})
}
return tsArray
}