src/postgres/src_backend_nodes_bitmapset.c (167 lines of code) (raw):
/*--------------------------------------------------------------------
* Symbols referenced in this file:
* - bms_copy
* - bms_equal
* - bms_is_empty
* - bms_add_member
* - bms_make_singleton
* - bms_first_member
* - rightmost_one_pos
* - bms_free
*--------------------------------------------------------------------
*/
/*-------------------------------------------------------------------------
*
* bitmapset.c
* PostgreSQL generic bitmap set package
*
* A bitmap set can represent any set of nonnegative integers, although
* it is mainly intended for sets where the maximum value is not large,
* say at most a few hundred. By convention, a NULL pointer is always
* accepted by all operations to represent the empty set. (But beware
* that this is not the only representation of the empty set. Use
* bms_is_empty() in preference to testing for NULL.)
*
*
* Copyright (c) 2003-2017, PostgreSQL Global Development Group
*
* IDENTIFICATION
* src/backend/nodes/bitmapset.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/hash.h"
#include "nodes/pg_list.h"
#define WORDNUM(x) ((x) / BITS_PER_BITMAPWORD)
#define BITNUM(x) ((x) % BITS_PER_BITMAPWORD)
#define BITMAPSET_SIZE(nwords) \
(offsetof(Bitmapset, words) + (nwords) * sizeof(bitmapword))
/*----------
* This is a well-known cute trick for isolating the rightmost one-bit
* in a word. It assumes two's complement arithmetic. Consider any
* nonzero value, and focus attention on the rightmost one. The value is
* then something like
* xxxxxx10000
* where x's are unspecified bits. The two's complement negative is formed
* by inverting all the bits and adding one. Inversion gives
* yyyyyy01111
* where each y is the inverse of the corresponding x. Incrementing gives
* yyyyyy10000
* and then ANDing with the original value gives
* 00000010000
* This works for all cases except original value = zero, where of course
* we get zero.
*----------
*/
#define RIGHTMOST_ONE(x) ((signedbitmapword) (x) & -((signedbitmapword) (x)))
#define HAS_MULTIPLE_ONES(x) ((bitmapword) RIGHTMOST_ONE(x) != (x))
/*
* Lookup tables to avoid need for bit-by-bit groveling
*
* rightmost_one_pos[x] gives the bit number (0-7) of the rightmost one bit
* in a nonzero byte value x. The entry for x=0 is never used.
*
* number_of_ones[x] gives the number of one-bits (0-8) in a byte value x.
*
* We could make these tables larger and reduce the number of iterations
* in the functions that use them, but bytewise shifts and masks are
* especially fast on many machines, so working a byte at a time seems best.
*/
static const uint8 rightmost_one_pos[256] = {
0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};
/*
* bms_copy - make a palloc'd copy of a bitmapset
*/
Bitmapset *
bms_copy(const Bitmapset *a)
{
Bitmapset *result;
size_t size;
if (a == NULL)
return NULL;
size = BITMAPSET_SIZE(a->nwords);
result = (Bitmapset *) palloc(size);
memcpy(result, a, size);
return result;
}
/*
* bms_equal - are two bitmapsets equal?
*
* This is logical not physical equality; in particular, a NULL pointer will
* be reported as equal to a palloc'd value containing no members.
*/
bool
bms_equal(const Bitmapset *a, const Bitmapset *b)
{
const Bitmapset *shorter;
const Bitmapset *longer;
int shortlen;
int longlen;
int i;
/* Handle cases where either input is NULL */
if (a == NULL)
{
if (b == NULL)
return true;
return bms_is_empty(b);
}
else if (b == NULL)
return bms_is_empty(a);
/* Identify shorter and longer input */
if (a->nwords <= b->nwords)
{
shorter = a;
longer = b;
}
else
{
shorter = b;
longer = a;
}
/* And process */
shortlen = shorter->nwords;
for (i = 0; i < shortlen; i++)
{
if (shorter->words[i] != longer->words[i])
return false;
}
longlen = longer->nwords;
for (; i < longlen; i++)
{
if (longer->words[i] != 0)
return false;
}
return true;
}
/*
* bms_make_singleton - build a bitmapset containing a single member
*/
Bitmapset *
bms_make_singleton(int x)
{
Bitmapset *result;
int wordnum,
bitnum;
if (x < 0)
elog(ERROR, "negative bitmapset member not allowed");
wordnum = WORDNUM(x);
bitnum = BITNUM(x);
result = (Bitmapset *) palloc0(BITMAPSET_SIZE(wordnum + 1));
result->nwords = wordnum + 1;
result->words[wordnum] = ((bitmapword) 1 << bitnum);
return result;
}
/*
* bms_free - free a bitmapset
*
* Same as pfree except for allowing NULL input
*/
void
bms_free(Bitmapset *a)
{
if (a)
pfree(a);
}
/*
* These operations all make a freshly palloc'd result,
* leaving their inputs untouched
*/
/*
* bms_union - set union
*/
/*
* bms_intersect - set intersection
*/
/*
* bms_difference - set difference (ie, A without members of B)
*/
/*
* bms_is_subset - is A a subset of B?
*/
/*
* bms_subset_compare - compare A and B for equality/subset relationships
*
* This is more efficient than testing bms_is_subset in both directions.
*/
/*
* bms_is_member - is X a member of A?
*/
/*
* bms_overlap - do sets overlap (ie, have a nonempty intersection)?
*/
/*
* bms_overlap_list - does a set overlap an integer list?
*/
/*
* bms_nonempty_difference - do sets have a nonempty difference?
*/
/*
* bms_singleton_member - return the sole integer member of set
*
* Raises error if |a| is not 1.
*/
/*
* bms_get_singleton_member
*
* Test whether the given set is a singleton.
* If so, set *member to the value of its sole member, and return TRUE.
* If not, return FALSE, without changing *member.
*
* This is more convenient and faster than calling bms_membership() and then
* bms_singleton_member(), if we don't care about distinguishing empty sets
* from multiple-member sets.
*/
/*
* bms_num_members - count members of set
*/
/*
* bms_membership - does a set have zero, one, or multiple members?
*
* This is faster than making an exact count with bms_num_members().
*/
/*
* bms_is_empty - is a set empty?
*
* This is even faster than bms_membership().
*/
bool
bms_is_empty(const Bitmapset *a)
{
int nwords;
int wordnum;
if (a == NULL)
return true;
nwords = a->nwords;
for (wordnum = 0; wordnum < nwords; wordnum++)
{
bitmapword w = a->words[wordnum];
if (w != 0)
return false;
}
return true;
}
/*
* These operations all "recycle" their non-const inputs, ie, either
* return the modified input or pfree it if it can't hold the result.
*
* These should generally be used in the style
*
* foo = bms_add_member(foo, x);
*/
/*
* bms_add_member - add a specified member to set
*
* Input set is modified or recycled!
*/
Bitmapset *
bms_add_member(Bitmapset *a, int x)
{
int wordnum,
bitnum;
if (x < 0)
elog(ERROR, "negative bitmapset member not allowed");
if (a == NULL)
return bms_make_singleton(x);
wordnum = WORDNUM(x);
bitnum = BITNUM(x);
/* enlarge the set if necessary */
if (wordnum >= a->nwords)
{
int oldnwords = a->nwords;
int i;
a = (Bitmapset *) repalloc(a, BITMAPSET_SIZE(wordnum + 1));
a->nwords = wordnum + 1;
/* zero out the enlarged portion */
for (i = oldnwords; i < a->nwords; i++)
a->words[i] = 0;
}
a->words[wordnum] |= ((bitmapword) 1 << bitnum);
return a;
}
/*
* bms_del_member - remove a specified member from set
*
* No error if x is not currently a member of set
*
* Input set is modified in-place!
*/
/*
* bms_add_members - like bms_union, but left input is recycled
*/
/*
* bms_int_members - like bms_intersect, but left input is recycled
*/
/*
* bms_del_members - like bms_difference, but left input is recycled
*/
/*
* bms_join - like bms_union, but *both* inputs are recycled
*/
/*
* bms_first_member - find and remove first member of a set
*
* Returns -1 if set is empty. NB: set is destructively modified!
*
* This is intended as support for iterating through the members of a set.
* The typical pattern is
*
* while ((x = bms_first_member(inputset)) >= 0)
* process member x;
*
* CAUTION: this destroys the content of "inputset". If the set must
* not be modified, use bms_next_member instead.
*/
int
bms_first_member(Bitmapset *a)
{
int nwords;
int wordnum;
if (a == NULL)
return -1;
nwords = a->nwords;
for (wordnum = 0; wordnum < nwords; wordnum++)
{
bitmapword w = a->words[wordnum];
if (w != 0)
{
int result;
w = RIGHTMOST_ONE(w);
a->words[wordnum] &= ~w;
result = wordnum * BITS_PER_BITMAPWORD;
while ((w & 255) == 0)
{
w >>= 8;
result += 8;
}
result += rightmost_one_pos[w & 255];
return result;
}
}
return -1;
}
/*
* bms_next_member - find next member of a set
*
* Returns smallest member greater than "prevbit", or -2 if there is none.
* "prevbit" must NOT be less than -1, or the behavior is unpredictable.
*
* This is intended as support for iterating through the members of a set.
* The typical pattern is
*
* x = -1;
* while ((x = bms_next_member(inputset, x)) >= 0)
* process member x;
*
* Notice that when there are no more members, we return -2, not -1 as you
* might expect. The rationale for that is to allow distinguishing the
* loop-not-started state (x == -1) from the loop-completed state (x == -2).
* It makes no difference in simple loop usage, but complex iteration logic
* might need such an ability.
*/
/*
* bms_hash_value - compute a hash key for a Bitmapset
*
* Note: we must ensure that any two bitmapsets that are bms_equal() will
* hash to the same value; in practice this means that trailing all-zero
* words must not affect the result. Hence we strip those before applying
* hash_any().
*/