google/generativeai/notebook/command_utils.py (113 lines of code) (raw):
# -*- coding: utf-8 -*-
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for Commands.
Common methods for Commands such as RunCommand and CompileCommand.
"""
from __future__ import annotations
from typing import AbstractSet, Any, Callable, Sequence
from google.generativeai.notebook import ipython_env
from google.generativeai.notebook import model_registry
from google.generativeai.notebook import parsed_args_lib
from google.generativeai.notebook import post_process_utils
from google.generativeai.notebook.lib import llm_function
from google.generativeai.notebook.lib import llmfn_input_utils
from google.generativeai.notebook.lib import llmfn_output_row
from google.generativeai.notebook.lib import llmfn_outputs
from google.generativeai.notebook.lib import unique_fn
class _GroundTruthLLMFunction(llm_function.LLMFunction):
"""LLMFunction that returns pre-generated ground truth data."""
def __init__(self, data: Sequence[str]):
super().__init__(outputs_ipython_display_fn=None)
self._data = data
def get_placeholders(self) -> AbstractSet[str]:
# Ground truth is fixed and thus has no placeholders.
return frozenset({})
def _call_impl(
self, inputs: llmfn_input_utils.LLMFunctionInputs | None
) -> Sequence[llmfn_outputs.LLMFnOutputEntry]:
normalized_inputs = llmfn_input_utils.to_normalized_inputs(inputs)
if len(self._data) != len(normalized_inputs):
raise RuntimeError(
"Ground truth should have same number of entries as inputs: {} vs {}".format(
len(self._data), len(normalized_inputs)
)
)
outputs: list[llmfn_outputs.LLMFnOutputEntry] = []
for idx, (value, prompt_vars) in enumerate(zip(self._data, normalized_inputs)):
output_row = llmfn_output_row.LLMFnOutputRow(
data={
llmfn_outputs.ColumnNames.RESULT_NUM: 0,
llmfn_outputs.ColumnNames.TEXT_RESULT: value,
},
result_type=str,
)
outputs.append(
llmfn_outputs.LLMFnOutputEntry(
prompt_num=0,
input_num=idx,
prompt_vars=prompt_vars,
output_rows=[output_row],
)
)
return outputs
def _get_ipython_display_fn(
env: ipython_env.IPythonEnv,
) -> Callable[[llmfn_outputs.LLMFnOutputs], None]:
return lambda x: env.display(x.as_pandas_dataframe())
def create_llm_function(
models: model_registry.ModelRegistry,
env: ipython_env.IPythonEnv | None,
parsed_args: parsed_args_lib.ParsedArgs,
cell_content: str,
post_processing_fns: Sequence[post_process_utils.ParsedPostProcessExpr],
) -> llm_function.LLMFunction:
"""Creates an LLMFunction from Command.execute() arguments."""
prompts: list[str] = [cell_content]
llmfn_outputs_display_fn = _get_ipython_display_fn(env) if env else None
llm_fn = llm_function.LLMFunctionImpl(
model=models.get_model(parsed_args.model_type),
model_args=parsed_args.model_args,
prompts=prompts,
outputs_ipython_display_fn=llmfn_outputs_display_fn,
)
if parsed_args.unique:
llm_fn = llm_fn.add_post_process_reorder_fn(name="unique", fn=unique_fn.unique_fn)
for fn in post_processing_fns:
llm_fn = fn.add_to_llm_function(llm_fn)
return llm_fn
def _convert_simple_compare_fn(
name_and_simple_fn: tuple[str, Callable[[str, str], Any]],
) -> tuple[str, llm_function.CompareFn]:
simple_fn = name_and_simple_fn[1]
new_fn = lambda x, y: simple_fn(x.result_value(), y.result_value())
return name_and_simple_fn[0], new_fn
def create_llm_compare_function(
env: ipython_env.IPythonEnv | None,
parsed_args: parsed_args_lib.ParsedArgs,
post_processing_fns: Sequence[post_process_utils.ParsedPostProcessExpr],
) -> llm_function.LLMFunction:
"""Creates an LLMCompareFunction from Command.execute() arguments."""
llmfn_outputs_display_fn = _get_ipython_display_fn(env) if env else None
llm_cmp_fn = llm_function.LLMCompareFunction(
lhs_name_and_fn=parsed_args.lhs_name_and_fn,
rhs_name_and_fn=parsed_args.rhs_name_and_fn,
compare_name_and_fns=[_convert_simple_compare_fn(x) for x in parsed_args.compare_fn],
outputs_ipython_display_fn=llmfn_outputs_display_fn,
)
for fn in post_processing_fns:
llm_cmp_fn = fn.add_to_llm_function(llm_cmp_fn)
return llm_cmp_fn
def create_llm_eval_function(
models: model_registry.ModelRegistry,
env: ipython_env.IPythonEnv | None,
parsed_args: parsed_args_lib.ParsedArgs,
cell_content: str,
post_processing_fns: Sequence[post_process_utils.ParsedPostProcessExpr],
) -> llm_function.LLMFunction:
"""Creates an LLMCompareFunction from Command.execute() arguments."""
llmfn_outputs_display_fn = _get_ipython_display_fn(env) if env else None
# First construct a regular LLMFunction from the cell contents.
llm_fn = create_llm_function(
models=models,
env=env,
parsed_args=parsed_args,
cell_content=cell_content,
post_processing_fns=post_processing_fns,
)
# Next create a LLMCompareFunction.
ground_truth_fn = _GroundTruthLLMFunction(data=parsed_args.ground_truth)
llm_cmp_fn = llm_function.LLMCompareFunction(
lhs_name_and_fn=("actual", llm_fn),
rhs_name_and_fn=("ground_truth", ground_truth_fn),
compare_name_and_fns=[_convert_simple_compare_fn(x) for x in parsed_args.compare_fn],
outputs_ipython_display_fn=llmfn_outputs_display_fn,
)
return llm_cmp_fn