core/genai_model.py [93:140]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      debug_config: client.DebugConfig | None = None,
      http_options: (
          genai_types.HttpOptions | genai_types.HttpOptionsDict | None
      ) = None,
  ):
    """Initializes the GenaiModel.

    Args:
      api_key: The `API key <https://ai.google.dev/gemini-api/docs/api-key>`_ to
        use for authentication. Applies to the Gemini Developer API only.
      model_name: The name of the model to use.
      generate_content_config: The configuration for generating content.
      debug_config: Config settings that control network behavior of the client.
        This is typically used when running test code.
      http_options: Http options to use for the client. These options will be
        applied to all requests made by the client. Example usage: `client =
        genai.Client(http_options=types.HttpOptions(api_version='v1'))`.

    Returns:
      A `Processor` that calls the Genai API in turn-based fashion.

    ## Model Name Usage

    Supported formats for **Vertex AI API** include:

      * The Gemini model ID, for example: 'gemini-2.0-flash'
      * The full resource name starts with 'projects/', for example:
      'projects/my-project-id/locations/us-central1/publishers/google/models/gemini-2.0-flash'
      * The partial resource name with 'publishers/', for example:
      'publishers/google/models/gemini-2.0-flash' or
      'publishers/meta/models/llama-3.1-405b-instruct-maas' / separated
      publisher and model name, for example: 'google/gemini-2.0-flash' or
      'meta/llama-3.1-405b-instruct-maas'

    Supported formats for **Gemini API** include:

      * The Gemini model ID, for example: 'gemini-2.0-flash'
      * The model name starts with 'models/', for example:
      'models/gemini-2.0-flash'
      * For tuned models, the model name starts with 'tunedModels/', for
      example: 'tunedModels/1234567890123456789'
    """
    self._client = client.Client(
        api_key=api_key,
        debug_config=debug_config,
        http_options=http_options,
    )
    self._model_name = model_name
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



core/live_model.py [151:179]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      debug_config: client.DebugConfig | None = None,
      http_options: (
          genai_types.HttpOptions | genai_types.HttpOptionsDict | None
      ) = None,
  ):
    """Initializes the Live Processor.

    Args:
      api_key: The [API key](https://ai.google.dev/gemini-api/docs/api-key) to
        use for authentication. Applies to the Gemini Developer API only.
      model_name: The name of the model to use. See
        https://ai.google.dev/gemini-api/docs/models for a list of available
          models. Only use models with a `-live-` suffix.
      realtime_config: The configuration for generating realtime content.
      debug_config: Config settings that control network behavior of the client.
        This is typically used when running test code.
      http_options: Http options to use for the client. These options will be
        applied to all requests made by the client. Example usage: `client =
        genai.Client(http_options=types.HttpOptions(api_version='v1'))`.

    Returns:
      A `Processor` that calls the Genai API in a realtime (aka live) fashion.
    """
    self._client = client.Client(
        api_key=api_key,
        debug_config=debug_config,
        http_options=http_options,
    )
    self._model_name = model_name
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



