in openai/embeddings.go [26:73]
func (h *handlers) EmbeddingsHandler(w http.ResponseWriter, r *http.Request) {
if r.Method != http.MethodPost {
internal.ErrorHandler(w, r, http.StatusMethodNotAllowed, "method not allowed")
return
}
body, err := io.ReadAll(r.Body)
if err != nil {
internal.ErrorHandler(w, r, http.StatusInternalServerError, "failed to read request body: %v", err)
return
}
defer r.Body.Close()
var embeddingsReq EmbeddingsRequest
if err := json.Unmarshal(body, &embeddingsReq); err != nil {
internal.ErrorHandler(w, r, http.StatusInternalServerError, "failed to unmarshal request body: %v", err)
return
}
model := h.geminiClient.EmbeddingModel(embeddingsReq.Model)
batch := model.NewBatch()
for _, content := range embeddingsReq.Input {
batch.AddContent(genai.Text(content))
}
geminiResp, err := model.BatchEmbedContents(r.Context(), batch)
if err != nil {
internal.ErrorHandler(w, r, http.StatusInternalServerError, "failed to make embeddings request: %v", err)
return
}
embeddingsResp := &EmbeddingsResponse{
Object: "list",
Model: embeddingsReq.Model,
Data: make([]EmbeddingData, 0, len(geminiResp.Embeddings)),
}
for i, contentEmbedding := range geminiResp.Embeddings {
embeddingsResp.Data = append(embeddingsResp.Data, EmbeddingData{
Index: i,
Object: "embedding",
Embedding: contentEmbedding.Values,
})
}
if err := json.NewEncoder(w).Encode(embeddingsResp); err != nil {
internal.ErrorHandler(w, r, http.StatusInternalServerError, "failed to encode embeddings response: %v", err)
return
}
}