func()

in s2/cell.go [281:360]


func (c Cell) RectBound() Rect {
	if c.level > 0 {
		// Except for cells at level 0, the latitude and longitude extremes are
		// attained at the vertices.  Furthermore, the latitude range is
		// determined by one pair of diagonally opposite vertices and the
		// longitude range is determined by the other pair.
		//
		// We first determine which corner (i,j) of the cell has the largest
		// absolute latitude.  To maximize latitude, we want to find the point in
		// the cell that has the largest absolute z-coordinate and the smallest
		// absolute x- and y-coordinates.  To do this we look at each coordinate
		// (u and v), and determine whether we want to minimize or maximize that
		// coordinate based on the axis direction and the cell's (u,v) quadrant.
		u := c.uv.X.Lo + c.uv.X.Hi
		v := c.uv.Y.Lo + c.uv.Y.Hi
		var i, j int
		if uAxis(int(c.face)).Z == 0 {
			if u < 0 {
				i = 1
			}
		} else if u > 0 {
			i = 1
		}
		if vAxis(int(c.face)).Z == 0 {
			if v < 0 {
				j = 1
			}
		} else if v > 0 {
			j = 1
		}
		lat := r1.IntervalFromPoint(c.latitude(i, j)).AddPoint(c.latitude(1-i, 1-j))
		lng := s1.EmptyInterval().AddPoint(c.longitude(i, 1-j)).AddPoint(c.longitude(1-i, j))

		// We grow the bounds slightly to make sure that the bounding rectangle
		// contains LatLngFromPoint(P) for any point P inside the loop L defined by the
		// four *normalized* vertices.  Note that normalization of a vector can
		// change its direction by up to 0.5 * dblEpsilon radians, and it is not
		// enough just to add Normalize calls to the code above because the
		// latitude/longitude ranges are not necessarily determined by diagonally
		// opposite vertex pairs after normalization.
		//
		// We would like to bound the amount by which the latitude/longitude of a
		// contained point P can exceed the bounds computed above.  In the case of
		// longitude, the normalization error can change the direction of rounding
		// leading to a maximum difference in longitude of 2 * dblEpsilon.  In
		// the case of latitude, the normalization error can shift the latitude by
		// up to 0.5 * dblEpsilon and the other sources of error can cause the
		// two latitudes to differ by up to another 1.5 * dblEpsilon, which also
		// leads to a maximum difference of 2 * dblEpsilon.
		return Rect{lat, lng}.expanded(LatLng{s1.Angle(2 * dblEpsilon), s1.Angle(2 * dblEpsilon)}).PolarClosure()
	}

	// The 4 cells around the equator extend to +/-45 degrees latitude at the
	// midpoints of their top and bottom edges.  The two cells covering the
	// poles extend down to +/-35.26 degrees at their vertices.  The maximum
	// error in this calculation is 0.5 * dblEpsilon.
	var bound Rect
	switch c.face {
	case 0:
		bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{-math.Pi / 4, math.Pi / 4}}
	case 1:
		bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{math.Pi / 4, 3 * math.Pi / 4}}
	case 2:
		bound = Rect{r1.Interval{poleMinLat, math.Pi / 2}, s1.FullInterval()}
	case 3:
		bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{3 * math.Pi / 4, -3 * math.Pi / 4}}
	case 4:
		bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{-3 * math.Pi / 4, -math.Pi / 4}}
	default:
		bound = Rect{r1.Interval{-math.Pi / 2, -poleMinLat}, s1.FullInterval()}
	}

	// Finally, we expand the bound to account for the error when a point P is
	// converted to an LatLng to test for containment. (The bound should be
	// large enough so that it contains the computed LatLng of any contained
	// point, not just the infinite-precision version.) We don't need to expand
	// longitude because longitude is calculated via a single call to math.Atan2,
	// which is guaranteed to be semi-monotonic.
	return bound.expanded(LatLng{s1.Angle(dblEpsilon), s1.Angle(0)})
}