in s2/edge_query.go [416:491]
func (e *EdgeQuery) findEdgesInternal(target distanceTarget, opts *queryOptions) {
e.target = target
e.opts = opts
e.testedEdges = make(map[ShapeEdgeID]uint32)
e.distanceLimit = target.distance().fromChordAngle(opts.distanceLimit)
e.results = make([]EdgeQueryResult, 0)
if e.distanceLimit == target.distance().zero() {
return
}
if opts.includeInteriors {
shapeIDs := map[int32]struct{}{}
e.target.visitContainingShapes(e.index, func(containingShape Shape, targetPoint Point) bool {
shapeIDs[e.index.idForShape(containingShape)] = struct{}{}
return len(shapeIDs) < opts.maxResults
})
for shapeID := range shapeIDs {
e.addResult(EdgeQueryResult{target.distance().zero(), shapeID, -1})
}
if e.distanceLimit == target.distance().zero() {
return
}
}
// If maxError > 0 and the target takes advantage of this, then we may
// need to adjust the distance estimates to ShapeIndex cells to ensure
// that they are always a lower bound on the true distance. For example,
// suppose max_distance == 100, maxError == 30, and we compute the distance
// to the target from some cell C0 as d(C0) == 80. Then because the target
// takes advantage of maxError, the true distance could be as low as 50.
// In order not to miss edges contained by such cells, we need to subtract
// maxError from the distance estimates. This behavior is controlled by
// the useConservativeCellDistance flag.
//
// However there is one important case where this adjustment is not
// necessary, namely when distanceLimit < maxError, This is because
// maxError only affects the algorithm once at least maxEdges edges
// have been found that satisfy the given distance limit. At that point,
// maxError is subtracted from distanceLimit in order to ensure that
// any further matches are closer by at least that amount. But when
// distanceLimit < maxError, this reduces the distance limit to 0,
// i.e. all remaining candidate cells and edges can safely be discarded.
// (This is how IsDistanceLess() and friends are implemented.)
targetUsesMaxError := opts.maxError != target.distance().zero().chordAngle() &&
e.target.setMaxError(opts.maxError)
// Note that we can't compare maxError and distanceLimit directly
// because one is a Delta and one is a Distance. Instead we subtract them.
e.useConservativeCellDistance = targetUsesMaxError &&
(e.distanceLimit == target.distance().infinity() ||
target.distance().zero().less(e.distanceLimit.sub(target.distance().fromChordAngle(opts.maxError))))
// Use the brute force algorithm if the index is small enough. To avoid
// spending too much time counting edges when there are many shapes, we stop
// counting once there are too many edges. We may need to recount the edges
// if we later see a target with a larger brute force edge threshold.
minOptimizedEdges := e.target.maxBruteForceIndexSize() + 1
if minOptimizedEdges > e.indexNumEdgesLimit && e.indexNumEdges >= e.indexNumEdgesLimit {
e.indexNumEdges = e.index.NumEdgesUpTo(minOptimizedEdges)
e.indexNumEdgesLimit = minOptimizedEdges
}
if opts.useBruteForce || e.indexNumEdges < minOptimizedEdges {
// The brute force algorithm already considers each edge exactly once.
e.avoidDuplicates = false
e.findEdgesBruteForce()
} else {
// If the target takes advantage of maxError then we need to avoid
// duplicate edges explicitly. (Otherwise it happens automatically.)
e.avoidDuplicates = targetUsesMaxError && opts.maxResults > 1
e.findEdgesOptimized()
}
}