def ConfigurableTerraformer()

in trax/models/research/terraformer.py [0:0]


def ConfigurableTerraformer(input_vocab_size,
                            output_vocab_size=None,
                            d_model=512,
                            d_ff=2048,
                            d_attention_key=None,
                            d_attention_value=None,
                            n_encoder_layers=6,
                            n_decoder_layers=6,
                            n_heads=8,
                            dropout=0.1,
                            max_len=2048,
                            encoder_attention_type=tl.SelfAttention,
                            encoder_decoder_attention_type=tl.SelfAttention,
                            pos_type='fixed-base',
                            pos_axial_shape=(),
                            pos_d_axial_embs=None,
                            pos_start_from_zero_prob=1.0,
                            pos_max_offset_to_add=0,
                            ff_activation=tl.Relu,
                            ff_use_sru=0,
                            ff_chunk_size=0,
                            ff_dropout=None,
                            ff_sparsity=0,
                            loss_sparsity_type='mult',
                            loss_sparsity=0,
                            loss_d_lowrank=0,
                            loss_sparsity_prob=None,
                            attention_chunk_size=0,
                            n_layers_forget=0,
                            forget_dense=True,
                            n_decoder_attention_layers=2,
                            use_bfloat16=False,
                            reversible_encoder=False,
                            use_two_swaps_per_encoder_block=True,
                            center_layernorm=True,
                            half_before_layer=None,
                            double_after_layer=None,
                            mode='train'):
  """Returns a highly configurable Terraformer encoder-decoder model.

  This model maps paired text sequences (source and target) to float-valued
  losses. If ``input_vocab_size`` is not ``None``, the layer takes
  two input sequences:

    - inputs (2):

        - source: 2-D int array representing a batch of text strings via token
          IDs plus padding markers; shape is `(batch_size, sequence_length)`,
          where sequence_length <= ``max_len``. Array elements are in
          ``range(input_vocab_size)``, and 0 values mark padding positions.

        - target: 2-D int array representing a batch of text strings via token
          IDs plus padding markers; shape is `(batch_size, sequence_length)`,
          where sequence_length <= ``max_len``. Array elements are in
          ``range(output_vocab_size)``, and 0 values mark padding positions.

    - output: 1-D float array of losses; shape is `(batch_size)`.

  If ``input_vocab_size`` is ``None``, the layer takes three input sequences:

    - inputs (3):

        - source: 3-D float array representing a batch of already-embedded text
          strings; shape is `(batch_size, sequence_length, d_model)`, where
          sequence_length <= ``max_len``.

        - mask: 2-D int array representing active versus masked positions; 0
          values mark masked (padding) positions.

        - target: 2-D int array representing a batch of text strings via token
          IDs plus padding markers; shape is `(batch_size, sequence_length)`,
          where sequence_length <= ``max_len``. Array elements are in
          ``range(output_vocab_size)``, and 0 values mark padding positions.

    - output: 1-D float array of losses; shape is `(batch_size)`.

  Args:
    input_vocab_size: Input vocabulary size -- each element of the input tensor
        should be an integer in ``range(vocab_size)``. These integers typically
        represent token IDs from a vocabulary-based tokenizer.
    output_vocab_size: If specified, gives the vocabulary size for the targets;
        if ``None``, then input and target integers (token IDs) are assumed to
        come from the same vocabulary.
    d_model: Last/innermost dimension of activation arrays at most points in
        the model, including the initial embedding output.
    d_ff: Last/innermost dimension of special (typically wider)
        :py:class:`Dense` layer in the feedforward part of each encoder block.
    d_attention_key: Depth of key vectors in each attention head.
    d_attention_value: Depth of value vectors in each attention head.
    n_encoder_layers: Number of encoder blocks.
    n_decoder_layers: Number of decoder blocks.
    n_heads: Number of attention heads.
    dropout: Stochastic rate (probability) for dropping an activation value
        when applying dropout within encoder/decoder blocks. The same rate is
        also used for attention dropout in encoder/decoder blocks.
    max_len: Maximum symbol length for positional encoding.
    encoder_attention_type: Type of attention to use in the encoder; must be
        an attention-type subclass of :py:class:`trax.layers.Layer`.
    encoder_decoder_attention_type: Type of attention to use in the decoder;
        must be an attention-type subclass of :py:class:`trax.layers.Layer`.
    pos_type: String indicating the type of positional embeddings to use.
    pos_axial_shape: Shape (tuple of ints) to use for the axial position
      encoding. If unset, axial position encoding is disabled.
    pos_d_axial_embs: Tuple of ints specifying the depth of position embedding
        for each axis. Tuple length must match ``pos_axial_shape``, and values
        must sum to ``d_model``.
    pos_start_from_zero_prob: Stochastic rate (probability) for starting
        positional encoding at position 0 during training. If 1.0, always start
        from position 0; if < 1.0, the non-zero starts will be uniformly
        distributed up to ``pos_max_offset_to_add``.
    pos_max_offset_to_add: Maximum offset to add to positions during training
        when randomizing. This offset plus input length must be less than
        ``max_len`` for all training examples.
    ff_activation: Type of activation function at the end of each block; must
        be an activation-type subclass of :py:class:`trax.layers.Layer`.
    ff_use_sru: If > 0, use this number of SRU layers in place of feedforward
        layers.
    ff_chunk_size: If > 0, chunk each feedforward layer into chunks of this
        size.
    ff_dropout: Stochastic rate (probability) for dropping an activation value
        at feedforward nonlinearities.
    ff_sparsity: If > 0, use sparse feedforward blocks with this level of
        sparsity.
    loss_sparsity_type: String indicating the type of sparsity to used in loss
        layer; see :py:class:`SparseDenseWithOptions` for options. If ``None``,
        use no sparsity.
    loss_sparsity: If > 0, use this level of sparsity in the loss layer.
    loss_d_lowrank: If > 0, use a (low-rank) intermediate layer, with this
        dimension, in the loss.
    loss_sparsity_prob: Stochastic rate (probability) for using the sparse
        version of the loss. If ``None``, use the sparse version exclusively.
    attention_chunk_size: If > 0, compute attention using chunks of this size.
    n_layers_forget: How often to have a forgetting block between layers.
    forget_dense: If True, use :py:class:`Dense` instances as forget layers;
        else use no-ops.
    n_decoder_attention_layers: Number of attention layers in a decoder block.
    use_bfloat16: If True, use bfloat16 for weights; else use float32.
    reversible_encoder: If True, make the encoder be reversible.
    use_two_swaps_per_encoder_block: If True, ensure that there is a an even
        number of swaps across the encoder.
    center_layernorm: If True, use centering in :py:class:`LayerNorm` (the
        default); else omit centering (which is known as RMS normalization).
    half_before_layer: If not None, specifies an n'th layer such that all
        layers before the n'th use half the normal values for ``d_model`` and
        ``d_ff``.
    double_after_layer: If not None, specifies an n'th layer such that all
        layers after the n'th use double the normal values for ``d_model`` and
        ``d_ff``.
    mode: If ``'train'``, include dropout in each encoder/decoder block; else
        dropout layers have no effect.

  Returns:
    A Terraformer encoder-decoder as a layer that maps from target and source
    text sequences to a scalar loss.
  """
  if mode == 'predict':
    portal_mask = _PortalInput()
  else:
    portal_mask = None

  # Set default dimensions for attention head key and value sizes.
  if (d_model / 2) % n_heads != 0:
    raise ValueError(f'n_heads ({n_heads}) must divide d_model/2 ({d_model/2})')
  if d_attention_key is None:
    d_attention_key = d_model // n_heads
  if d_attention_value is None:
    d_attention_value = d_model // n_heads

  # Set values of d_model, d_ff and d_qkv for the first stage.
  d_model1, d_ff1 = d_model, d_ff
  d_attention_key1, d_attention_value1 = d_attention_key, d_attention_value
  if half_before_layer:
    d_model1, d_ff1 = d_model / 2, d_ff / 2
    d_attention_key1 = d_attention_key / 2
    d_attention_value1 = d_attention_value / 2

  # Set values of d_model, d_ff and d_qkv for the final stage.
  d_model2, d_ff2 = d_model, d_ff
  d_attention_key2, d_attention_value2 = d_attention_key, d_attention_value
  if double_after_layer:
    d_model2, d_ff2 = d_model * 2, d_ff * 2
    d_attention_key2 = d_attention_key * 2
    d_attention_value2 = d_attention_value * 2

  # Vector embeddings.
  in_encoder, out_encoder, output_vocab_size = (
      ct.EmbeddingAndPositionalEncodings(
          input_vocab_size,
          d_model1,
          mode,
          dropout,
          [-2],  # dropout_shared_axes
          max_len,
          output_vocab_size=output_vocab_size,
          pos_type=pos_type,
          pos_axial_shape=pos_axial_shape,
          pos_d_axial_embs=pos_d_axial_embs,
          pos_start_from_zero_prob=pos_start_from_zero_prob,
          pos_max_offset_to_add=pos_max_offset_to_add,
          use_bfloat16=use_bfloat16)
  )

  def _EncoderBlock():
    return reformer.EncoderBlock(
        d_model1,
        d_ff1,
        n_heads,
        encoder_attention_type,
        dropout=dropout,
        ff_activation=ff_activation,
        ff_dropout=ff_dropout,
        ff_use_sru=ff_use_sru,
        ff_chunk_size=ff_chunk_size,
        ff_sparsity=ff_sparsity,
        attention_chunk_size=attention_chunk_size,
        center_layernorm=center_layernorm,
        use_bfloat16=use_bfloat16,
        use_two_swaps_per_block=use_two_swaps_per_encoder_block,
        mode=mode)

  def _Encoder():  # vec_e mask_e tok_e tok_d tok_d
    layers = [
        tl.ReversibleSelect([0, 0]),
        _ReversibleSerialForget(
            [_EncoderBlock() for _ in range(n_encoder_layers)],
            d_model1,
            n_layers_forget,
            forget_dense)
    ]
    if not reversible_encoder:
      layers += [
          _XYAvg(),
          tl.Dense(d_model1, use_bfloat16=use_bfloat16),
          tl.LayerNorm(),
      ]
    if mode == 'predict':
      return tl.Cache(tl.Serial(layers))
    else:
      return tl.Serial(layers)

  if mode == 'predict':
    # TODO(jaszczur): Remove temporary fix of Terraformer padding in predict.
    # In predict mode Terraformer needs masking for merged encoder-decoder
    # sequence. This monkey patches the layer with a mask to neccessary places.
    # This shouldn't be a permanent solution - mask should be passed through
    # the stack and all the layers.
    tl.attention.DotProductCausalAttention.monkey_patched_mask = (
        lambda x: portal_mask)
    tl.research.sparsity._RememberPad.monkey_patched_mask = (  # pylint: disable=protected-access
        lambda x: portal_mask)
    originalScanSRUCell = tl.rnn.ScanSRUCell
    tl.rnn.ScanSRUCell = functools.partial(tl.rnn.ScanSRUCell,
                                           monkey_patched_mask=portal_mask)

  decoder_blocks = []

  if isinstance(encoder_decoder_attention_type, (tuple, list)):
    assert n_decoder_layers % len(encoder_decoder_attention_type) == 0
  else:
    encoder_decoder_attention_type = [encoder_decoder_attention_type]
  for layer_idx in range(n_decoder_layers):
    layer_attention_type = encoder_decoder_attention_type[
        layer_idx % len(encoder_decoder_attention_type)]
    # Grow d_model, d_ff, and d_qkv if requested.
    d_m, d_f, d_k, d_v = d_model1, d_ff1, d_attention_key1, d_attention_value1
    if half_before_layer and layer_idx >= half_before_layer:
      d_m, d_f, d_k, d_v = d_model, d_ff, d_attention_key, d_attention_value
    if double_after_layer and layer_idx > double_after_layer:
      d_m, d_f, d_k, d_v = d_model2, d_ff2, d_attention_key2, d_attention_value2
    decoder_block = reformer.DecoderBlock(
        d_m, d_f, d_k, d_v, n_heads,
        attention_type=layer_attention_type,
        dropout=dropout,
        ff_activation=ff_activation,
        ff_dropout=ff_dropout,
        ff_use_sru=ff_use_sru,
        ff_chunk_size=ff_chunk_size,
        ff_sparsity=ff_sparsity,
        attention_chunk_size=attention_chunk_size,
        n_attention_layers=n_decoder_attention_layers,
        center_layernorm=center_layernorm,
        use_bfloat16=use_bfloat16,
        mode=mode)
    decoder_blocks.append(decoder_block)
    if half_before_layer and layer_idx == half_before_layer - 1:
      decoder_blocks.append(tl.ReversibleConcatenatePair())
    if double_after_layer and layer_idx == double_after_layer:
      decoder_blocks.append(tl.ReversibleConcatenatePair())

  if mode == 'predict':
    # After initializing the decoder we can revert to original state of
    # previously monkey-patched classes/functions.
    tl.attention.DotProductCausalAttention.monkey_patched_mask = (
        lambda x: None)
    tl.research.sparsity._RememberPad.monkey_patched_mask = (lambda x: None)  # pylint: disable=protected-access
    tl.rnn.ScanSRUCell = originalScanSRUCell

  def _Loss():
    return tl.SparseDenseWithOptions(
        output_vocab_size,
        d_input=d_model2,
        sparsity_type=loss_sparsity_type,
        sparsity=loss_sparsity,
        d_lowrank=loss_d_lowrank,
        prob_sparse=loss_sparsity_prob,
        use_bfloat16=use_bfloat16,
        mode=mode)

  def _enc_dec_concat():
    """Layers to merge encoder and decoder."""
    if reversible_encoder:
      return [
          tl.ReversibleSelect([0, 1, 4, 2, 3]),  # v_e v_d mask_e tok_e tok_d
          t2.ConcatWithPadding2(mode=mode),      # v_ed v_ed tok_e tok_d
      ]
    else:
      return [
          tl.ReversibleSelect([0, 3, 1, 2]),     # v_e v_d mask_e tok_e tok_d
          t2.ConcatWithPadding(mode=mode),       # v_ed tok_e tok_d
          tl.ReversibleSelect([0, 0]),           # v_ed v_ed tok_e tok_d
      ]

  def _inp_layers():
    if input_vocab_size is not None:
      return tl.AssertFunction(
          'bl,br->bld,bl,bl,br',  # b: batch, l/r: enc/dec length, d: vec depth
          tl.Serial(  # tok_e tok_d
              tl.Select([0, 0, 0, 1]),
              tl.Parallel(in_encoder, [tl.PaddingMask(),
                                       _RemoveAxes12()])
          ))  # vec_e mask_e tok_e tok_d
    else:
      # Input in this case is vec_e, mask_e, tok_d. Where all downstream
      # operations expect tok_e, we give it instead mask_e, expecting that
      # downstream ops only are looking for padding/not padding.
      return tl.AssertFunction(
          'blf,bl,br->bld,bl,bl,br',  # f: in-feature depth, d: out-vector depth
          tl.Serial(  # vec_e mask_e tok_d
              tl.Select([0, 1, 1, 2]),
              tl.Parallel(in_encoder, [], _AsTokenIDs())
          ))  # vec_e mask_e tok_e tok_d

  # Assemble and return the model.
  return tl.Serial(
      _inp_layers(),               # vec_e mask_e tok_e tok_d
      tl.Parallel([], portal_mask),

      tl.Select([0, 1, 2, 3, 3]),  # Copy decoder tokens for use in loss.

      # Embed in and out tokens; done together as weights may be shared.
      tl.Parallel([], [], [], [tl.ShiftRight(mode=mode),
                               out_encoder]),  # vec_e mask_e tok_e vec_d tok_d

      # Encode; then concat encoder and decoder, given encoder mask.
      _Encoder(),                             # vec_e mask_e tok_e vec_d tok_d
      _enc_dec_concat(),

      # Run decoder blocks.
      _ReversibleSerialForget(decoder_blocks, d_model2, n_layers_forget,
                              forget_dense),  # vec_ed1 vec_ed2 tok_e tok_d
      _XYAvg(),                               # vec_ed tok_e tok_d
      tl.LayerNorm(),                         # vec_ed tok_e tok_d

      # Separate out the encoder part from the concatenated vector,
      # then compute loss.
      tl.Select([0, 1, 2, 2]),                        # vec_ed tok_e tok_d tok_d
      t2.StripFromConcatenateWithPadding(mode=mode),  # vec_d tok_d
      _Loss(),  # vec_d tok_d
  )