tensorflow / adanet
Duplication

Places in code with 6 or more lines that are exactly the same.

Intro
  • For duplication, we look at places in code where there are 6 or more lines of code that are exactly the same.
  • Before duplication is calculated, the code is cleaned to remove empty lines, comments, and frequently duplicated constructs such as imports.
  • You should aim at having as little as possible (<5%) of duplicated code as high-level of duplication can lead to maintenance difficulties, poor factoring, and logical contradictions.
Learn more...
Duplication Overall
  • 11% duplication:
    • 7,348 cleaned lines of cleaned code (without empty lines, comments, and frequently duplicated constructs such as imports)
    • 859 duplicated lines
  • 55 duplicates
system11% (859 lines)
Duplication per Extension
py11% (859 lines)
Duplication per Component (primary)
adanet/core8% (370 lines)
research/improve_nas24% (358 lines)
adanet/autoensemble34% (91 lines)
adanet/subnetwork8% (14 lines)
adanet/ensemble2% (14 lines)
adanet/experimental2% (12 lines)
ROOT0% (0 lines)
adanet/pip_package0% (0 lines)
adanet/distributed0% (0 lines)
adanet0% (0 lines)
adanet/tf_compat0% (0 lines)
adanet/replay0% (0 lines)

Duplication Between Components (50+ lines)

G adanet/autoensemble adanet/autoensemble adanet/core adanet/core adanet/autoensemble--adanet/core 52

Download: SVG DOT (open online Graphviz editor)

Open 3D force graph...

Show more details on duplication between components...
Longest Duplicates
The list of 20 longest duplicates.
See data for all 55 duplicates...
Size#FoldersFilesLinesCode
38 x 2 research/improve_nas/trainer
research/improve_nas/trainer
nasnet.py
nasnet.py
357:401 (10%)
412:456 (10%)
view
30 x 2 research/improve_nas/trainer
research/improve_nas/trainer
cifar10.py
cifar100.py
28:78 (34%)
29:79 (34%)
view
26 x 2 research/improve_nas/trainer
research/improve_nas/trainer
nasnet.py
nasnet.py
319:344 (6%)
428:453 (6%)
view
26 x 2 research/improve_nas/trainer
research/improve_nas/trainer
nasnet.py
nasnet.py
319:344 (6%)
373:398 (6%)
view
21 x 2 research/improve_nas/trainer
research/improve_nas/trainer
cifar10.py
cifar100.py
96:133 (24%)
100:137 (24%)
view
20 x 2 research/improve_nas/trainer
research/improve_nas/trainer
nasnet.py
nasnet.py
164:196 (5%)
200:232 (5%)
view
18 x 2 research/improve_nas/trainer
research/improve_nas/trainer
nasnet.py
nasnet.py
141:160 (4%)
177:196 (4%)
view
18 x 2 research/improve_nas/trainer
research/improve_nas/trainer
nasnet.py
nasnet.py
141:160 (4%)
213:232 (4%)
view
14 x 2 research/improve_nas/trainer
research/improve_nas/trainer
cifar10.py
cifar100.py
135:151 (16%)
139:155 (16%)
view
12 x 2 adanet/core
adanet/core
estimator.py
tpu_estimator.py
604:615 (<1%)
91:102 (4%)
view
12 x 2 adanet/autoensemble
adanet/autoensemble
estimator.py
estimator.py
177:188 (11%)
359:370 (11%)
view
12 x 2 adanet/core
adanet/core
estimator.py
estimator.py
1098:1111 (<1%)
1127:1140 (<1%)
view
11 x 2 adanet/autoensemble
adanet/core
estimator.py
tpu_estimator.py
372:382 (10%)
105:115 (4%)
view
10 x 2 adanet/core
adanet/core
estimator.py
estimator.py
1458:1468 (<1%)
1549:1559 (<1%)
view
10 x 2 adanet/core
adanet/core
estimator.py
estimator.py
1306:1315 (<1%)
1343:1352 (<1%)
view
10 x 2 adanet/core
adanet/core
iteration.py
iteration.py
967:977 (1%)
986:995 (1%)
view
9 x 2 research/improve_nas/trainer
research/improve_nas/trainer
improve_nas.py
improve_nas.py
220:249 (5%)
269:300 (5%)
view
9 x 2 adanet/autoensemble
adanet/autoensemble
estimator.py
estimator.py
192:200 (8%)
380:388 (8%)
view
9 x 2 adanet/autoensemble
adanet/autoensemble
estimator.py
estimator.py
202:210 (8%)
390:398 (8%)
view
9 x 2 adanet/core
adanet/core
iteration.py
iteration.py
374:382 (1%)
808:816 (1%)
view
Duplicated Units
The list of top 1 duplicated units.
See data for all 1 unit duplicate
Size#FoldersFilesLinesCode
23 x 2 research/improve_nas/trainer
research/improve_nas/trainer
cifar10.py
cifar100.py
0:0 
0:0 
view