in adanet/autoensemble/estimator.py [0:0]
def __init__(self,
head,
candidate_pool,
max_iteration_steps,
ensemblers=None,
ensemble_strategies=None,
logits_fn=None,
last_layer_fn=None,
evaluator=None,
metric_fn=None,
force_grow=False,
adanet_loss_decay=.9,
model_dir=None,
config=None,
use_tpu=True,
eval_on_tpu=True,
export_to_tpu=True,
train_batch_size=None,
eval_batch_size=None,
predict_batch_size=None,
embedding_config_spec=None,
debug=False,
enable_ensemble_summaries=True,
enable_subnetwork_summaries=True,
global_step_combiner_fn=tf.math.reduce_mean,
max_iterations=None,
replay_config=None,
**kwargs):
subnetwork_generator = _GeneratorFromCandidatePool(candidate_pool,
logits_fn, last_layer_fn)
super(AutoEnsembleTPUEstimator, self).__init__(
head=head,
subnetwork_generator=subnetwork_generator,
max_iteration_steps=max_iteration_steps,
ensemblers=ensemblers,
ensemble_strategies=ensemble_strategies,
evaluator=evaluator,
metric_fn=metric_fn,
force_grow=force_grow,
adanet_loss_decay=adanet_loss_decay,
model_dir=model_dir,
config=config,
use_tpu=use_tpu,
eval_on_tpu=eval_on_tpu,
export_to_tpu=export_to_tpu,
train_batch_size=train_batch_size,
eval_batch_size=eval_batch_size,
predict_batch_size=predict_batch_size,
embedding_config_spec=embedding_config_spec,
debug=debug,
enable_ensemble_summaries=enable_ensemble_summaries,
enable_subnetwork_summaries=enable_subnetwork_summaries,
global_step_combiner_fn=global_step_combiner_fn,
max_iterations=max_iterations,
replay_config=replay_config,
**kwargs)