tensorflow_addons/optimizers/adabelief.py [149:172]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self._has_weight_decay = weight_decay != 0.0
        self._initial_total_steps = total_steps

    def _create_slots(self, var_list):
        for var in var_list:
            self.add_slot(var, "m")
        for var in var_list:
            self.add_slot(var, "v")
        if self.amsgrad:
            for var in var_list:
                self.add_slot(var, "vhat")

    def set_weights(self, weights):
        params = self.weights
        num_vars = int((len(params) - 1) / 2)
        if len(weights) == 3 * num_vars + 1:
            weights = weights[: len(params)]
        super().set_weights(weights)

    def _decayed_wd(self, var_dtype):
        wd_t = self._get_hyper("weight_decay", var_dtype)
        if isinstance(wd_t, tf.keras.optimizers.schedules.LearningRateSchedule):
            wd_t = tf.cast(wd_t(self.iterations), var_dtype)
        return wd_t
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



tensorflow_addons/optimizers/rectified_adam.py [139:162]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self._has_weight_decay = weight_decay != 0.0
        self._initial_total_steps = total_steps

    def _create_slots(self, var_list):
        for var in var_list:
            self.add_slot(var, "m")
        for var in var_list:
            self.add_slot(var, "v")
        if self.amsgrad:
            for var in var_list:
                self.add_slot(var, "vhat")

    def set_weights(self, weights):
        params = self.weights
        num_vars = int((len(params) - 1) / 2)
        if len(weights) == 3 * num_vars + 1:
            weights = weights[: len(params)]
        super().set_weights(weights)

    def _decayed_wd(self, var_dtype):
        wd_t = self._get_hyper("weight_decay", var_dtype)
        if isinstance(wd_t, tf.keras.optimizers.schedules.LearningRateSchedule):
            wd_t = tf.cast(wd_t(self.iterations), var_dtype)
        return wd_t
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



