in tensorflow_decision_forests/keras/wrappers_pre_generated.py [0:0]
def __init__(
self,
task: Optional[TaskType] = core.Task.CLASSIFICATION,
features: Optional[List[core.FeatureUsage]] = None,
exclude_non_specified_features: Optional[bool] = False,
preprocessing: Optional["tf.keras.models.Functional"] = None,
postprocessing: Optional["tf.keras.models.Functional"] = None,
ranking_group: Optional[str] = None,
uplift_treatment: Optional[str] = None,
temp_directory: Optional[str] = None,
verbose: int = 1,
hyperparameter_template: Optional[str] = None,
advanced_arguments: Optional[AdvancedArguments] = None,
num_threads: Optional[int] = None,
name: Optional[str] = None,
max_vocab_count: Optional[int] = 2000,
try_resume_training: Optional[bool] = True,
check_dataset: Optional[bool] = True,
apply_link_function: Optional[bool] = True,
force_numerical_discretization: Optional[bool] = False,
max_depth: Optional[int] = 6,
max_unique_values_for_discretized_numerical: Optional[int] = 16000,
maximum_model_size_in_memory_in_bytes: Optional[float] = -1.0,
maximum_training_duration_seconds: Optional[float] = -1.0,
min_examples: Optional[int] = 5,
num_candidate_attributes: Optional[int] = -1,
num_candidate_attributes_ratio: Optional[float] = -1.0,
num_trees: Optional[int] = 300,
random_seed: Optional[int] = 123456,
shrinkage: Optional[float] = 0.1,
use_hessian_gain: Optional[bool] = False,
worker_logs: Optional[bool] = True,
explicit_args: Optional[Set[str]] = None):
learner_params = {
"apply_link_function":
apply_link_function,
"force_numerical_discretization":
force_numerical_discretization,
"max_depth":
max_depth,
"max_unique_values_for_discretized_numerical":
max_unique_values_for_discretized_numerical,
"maximum_model_size_in_memory_in_bytes":
maximum_model_size_in_memory_in_bytes,
"maximum_training_duration_seconds":
maximum_training_duration_seconds,
"min_examples":
min_examples,
"num_candidate_attributes":
num_candidate_attributes,
"num_candidate_attributes_ratio":
num_candidate_attributes_ratio,
"num_trees":
num_trees,
"random_seed":
random_seed,
"shrinkage":
shrinkage,
"use_hessian_gain":
use_hessian_gain,
"worker_logs":
worker_logs,
}
if hyperparameter_template is not None:
learner_params = core._apply_hp_template(
learner_params, hyperparameter_template,
self.predefined_hyperparameters(), explicit_args)
super(DistributedGradientBoostedTreesModel, self).__init__(
task=task,
learner="DISTRIBUTED_GRADIENT_BOOSTED_TREES",
learner_params=learner_params,
features=features,
exclude_non_specified_features=exclude_non_specified_features,
preprocessing=preprocessing,
postprocessing=postprocessing,
ranking_group=ranking_group,
uplift_treatment=uplift_treatment,
temp_directory=temp_directory,
verbose=verbose,
advanced_arguments=advanced_arguments,
num_threads=num_threads,
name=name,
max_vocab_count=max_vocab_count,
try_resume_training=try_resume_training,
check_dataset=check_dataset)