def __init__()

in tensorflow_decision_forests/keras/wrappers_pre_generated.py [0:0]


  def __init__(
      self,
      task: Optional[TaskType] = core.Task.CLASSIFICATION,
      features: Optional[List[core.FeatureUsage]] = None,
      exclude_non_specified_features: Optional[bool] = False,
      preprocessing: Optional["tf.keras.models.Functional"] = None,
      postprocessing: Optional["tf.keras.models.Functional"] = None,
      ranking_group: Optional[str] = None,
      uplift_treatment: Optional[str] = None,
      temp_directory: Optional[str] = None,
      verbose: int = 1,
      hyperparameter_template: Optional[str] = None,
      advanced_arguments: Optional[AdvancedArguments] = None,
      num_threads: Optional[int] = None,
      name: Optional[str] = None,
      max_vocab_count: Optional[int] = 2000,
      try_resume_training: Optional[bool] = True,
      check_dataset: Optional[bool] = True,
      adapt_subsample_for_maximum_training_duration: Optional[bool] = False,
      allow_na_conditions: Optional[bool] = False,
      apply_link_function: Optional[bool] = True,
      categorical_algorithm: Optional[str] = "CART",
      categorical_set_split_greedy_sampling: Optional[float] = 0.1,
      categorical_set_split_max_num_items: Optional[int] = -1,
      categorical_set_split_min_item_frequency: Optional[int] = 1,
      compute_permutation_variable_importance: Optional[bool] = False,
      dart_dropout: Optional[float] = 0.01,
      early_stopping: Optional[str] = "LOSS_INCREASE",
      early_stopping_num_trees_look_ahead: Optional[int] = 30,
      focal_loss_alpha: Optional[float] = 0.5,
      focal_loss_gamma: Optional[float] = 2.0,
      forest_extraction: Optional[str] = "MART",
      goss_alpha: Optional[float] = 0.2,
      goss_beta: Optional[float] = 0.1,
      growing_strategy: Optional[str] = "LOCAL",
      honest: Optional[bool] = False,
      in_split_min_examples_check: Optional[bool] = True,
      keep_non_leaf_label_distribution: Optional[bool] = True,
      l1_regularization: Optional[float] = 0.0,
      l2_categorical_regularization: Optional[float] = 1.0,
      l2_regularization: Optional[float] = 0.0,
      lambda_loss: Optional[float] = 1.0,
      loss: Optional[str] = "DEFAULT",
      max_depth: Optional[int] = 6,
      max_num_nodes: Optional[int] = None,
      maximum_model_size_in_memory_in_bytes: Optional[float] = -1.0,
      maximum_training_duration_seconds: Optional[float] = -1.0,
      min_examples: Optional[int] = 5,
      missing_value_policy: Optional[str] = "GLOBAL_IMPUTATION",
      num_candidate_attributes: Optional[int] = -1,
      num_candidate_attributes_ratio: Optional[float] = -1.0,
      num_trees: Optional[int] = 300,
      random_seed: Optional[int] = 123456,
      sampling_method: Optional[str] = "NONE",
      selective_gradient_boosting_ratio: Optional[float] = 0.01,
      shrinkage: Optional[float] = 0.1,
      sorting_strategy: Optional[str] = "PRESORT",
      sparse_oblique_normalization: Optional[str] = None,
      sparse_oblique_num_projections_exponent: Optional[float] = None,
      sparse_oblique_projection_density_factor: Optional[float] = None,
      sparse_oblique_weights: Optional[str] = None,
      split_axis: Optional[str] = "AXIS_ALIGNED",
      subsample: Optional[float] = 1.0,
      uplift_min_examples_in_treatment: Optional[int] = 5,
      uplift_split_score: Optional[str] = "KULLBACK_LEIBLER",
      use_hessian_gain: Optional[bool] = False,
      validation_interval_in_trees: Optional[int] = 1,
      validation_ratio: Optional[float] = 0.1,
      explicit_args: Optional[Set[str]] = None):

    learner_params = {
        "adapt_subsample_for_maximum_training_duration":
            adapt_subsample_for_maximum_training_duration,
        "allow_na_conditions":
            allow_na_conditions,
        "apply_link_function":
            apply_link_function,
        "categorical_algorithm":
            categorical_algorithm,
        "categorical_set_split_greedy_sampling":
            categorical_set_split_greedy_sampling,
        "categorical_set_split_max_num_items":
            categorical_set_split_max_num_items,
        "categorical_set_split_min_item_frequency":
            categorical_set_split_min_item_frequency,
        "compute_permutation_variable_importance":
            compute_permutation_variable_importance,
        "dart_dropout":
            dart_dropout,
        "early_stopping":
            early_stopping,
        "early_stopping_num_trees_look_ahead":
            early_stopping_num_trees_look_ahead,
        "focal_loss_alpha":
            focal_loss_alpha,
        "focal_loss_gamma":
            focal_loss_gamma,
        "forest_extraction":
            forest_extraction,
        "goss_alpha":
            goss_alpha,
        "goss_beta":
            goss_beta,
        "growing_strategy":
            growing_strategy,
        "honest":
            honest,
        "in_split_min_examples_check":
            in_split_min_examples_check,
        "keep_non_leaf_label_distribution":
            keep_non_leaf_label_distribution,
        "l1_regularization":
            l1_regularization,
        "l2_categorical_regularization":
            l2_categorical_regularization,
        "l2_regularization":
            l2_regularization,
        "lambda_loss":
            lambda_loss,
        "loss":
            loss,
        "max_depth":
            max_depth,
        "max_num_nodes":
            max_num_nodes,
        "maximum_model_size_in_memory_in_bytes":
            maximum_model_size_in_memory_in_bytes,
        "maximum_training_duration_seconds":
            maximum_training_duration_seconds,
        "min_examples":
            min_examples,
        "missing_value_policy":
            missing_value_policy,
        "num_candidate_attributes":
            num_candidate_attributes,
        "num_candidate_attributes_ratio":
            num_candidate_attributes_ratio,
        "num_trees":
            num_trees,
        "random_seed":
            random_seed,
        "sampling_method":
            sampling_method,
        "selective_gradient_boosting_ratio":
            selective_gradient_boosting_ratio,
        "shrinkage":
            shrinkage,
        "sorting_strategy":
            sorting_strategy,
        "sparse_oblique_normalization":
            sparse_oblique_normalization,
        "sparse_oblique_num_projections_exponent":
            sparse_oblique_num_projections_exponent,
        "sparse_oblique_projection_density_factor":
            sparse_oblique_projection_density_factor,
        "sparse_oblique_weights":
            sparse_oblique_weights,
        "split_axis":
            split_axis,
        "subsample":
            subsample,
        "uplift_min_examples_in_treatment":
            uplift_min_examples_in_treatment,
        "uplift_split_score":
            uplift_split_score,
        "use_hessian_gain":
            use_hessian_gain,
        "validation_interval_in_trees":
            validation_interval_in_trees,
        "validation_ratio":
            validation_ratio,
    }

    if hyperparameter_template is not None:
      learner_params = core._apply_hp_template(
          learner_params, hyperparameter_template,
          self.predefined_hyperparameters(), explicit_args)

    super(GradientBoostedTreesModel, self).__init__(
        task=task,
        learner="GRADIENT_BOOSTED_TREES",
        learner_params=learner_params,
        features=features,
        exclude_non_specified_features=exclude_non_specified_features,
        preprocessing=preprocessing,
        postprocessing=postprocessing,
        ranking_group=ranking_group,
        uplift_treatment=uplift_treatment,
        temp_directory=temp_directory,
        verbose=verbose,
        advanced_arguments=advanced_arguments,
        num_threads=num_threads,
        name=name,
        max_vocab_count=max_vocab_count,
        try_resume_training=try_resume_training,
        check_dataset=check_dataset)