def _dnn_linear_combined_model_fn()

in tensorflow_estimator/python/estimator/canned/dnn_linear_combined.py [0:0]


def _dnn_linear_combined_model_fn(features,
                                  labels,
                                  mode,
                                  head,
                                  linear_feature_columns=None,
                                  linear_optimizer='Ftrl',
                                  dnn_feature_columns=None,
                                  dnn_optimizer='Adagrad',
                                  dnn_hidden_units=None,
                                  dnn_activation_fn=tf.nn.relu,
                                  dnn_dropout=None,
                                  input_layer_partitioner=None,
                                  config=None,
                                  batch_norm=False,
                                  linear_sparse_combiner='sum'):
  """Deep Neural Net and Linear combined model_fn.

  Args:
    features: dict of `Tensor`.
    labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of dtype
      `int32` or `int64` in the range `[0, n_classes)`.
    mode: Defines whether this is training, evaluation or prediction. See
      `ModeKeys`.
    head: A `Head` instance.
    linear_feature_columns: An iterable containing all the feature columns used
      by the Linear model.
    linear_optimizer: string, `Optimizer` object, or callable that defines the
      optimizer to use for training the Linear model. Defaults to the Ftrl
      optimizer.
    dnn_feature_columns: An iterable containing all the feature columns used by
      the DNN model.
    dnn_optimizer: string, `Optimizer` object, or callable that defines the
      optimizer to use for training the DNN model. Defaults to the Adagrad
      optimizer.
    dnn_hidden_units: List of hidden units per DNN layer.
    dnn_activation_fn: Activation function applied to each DNN layer. If `None`,
      will use `tf.nn.relu`.
    dnn_dropout: When not `None`, the probability we will drop out a given DNN
      coordinate.
    input_layer_partitioner: Partitioner for input layer.
    config: `RunConfig` object to configure the runtime settings.
    batch_norm: Whether to use batch normalization after each hidden layer.
    linear_sparse_combiner: A string specifying how to reduce the linear model
      if a categorical column is multivalent.  One of "mean", "sqrtn", and
      "sum".

  Returns:
    An `EstimatorSpec` instance.

  Raises:
    ValueError: If both `linear_feature_columns` and `dnn_features_columns`
      are empty at the same time, or `input_layer_partitioner` is missing,
      or features has the wrong type.
  """
  if not isinstance(features, dict):
    raise ValueError('features should be a dictionary of `Tensor`s. '
                     'Given type: {}'.format(type(features)))
  if not linear_feature_columns and not dnn_feature_columns:
    raise ValueError(
        'Either linear_feature_columns or dnn_feature_columns must be defined.')

  num_ps_replicas = config.num_ps_replicas if config else 0
  input_layer_partitioner = input_layer_partitioner or (
      tf.compat.v1.min_max_variable_partitioner(
          max_partitions=num_ps_replicas, min_slice_size=64 << 20))

  # Build DNN Logits.
  dnn_parent_scope = 'dnn'

  if not dnn_feature_columns:
    dnn_logits = None
  else:
    dnn_optimizer = optimizers.get_optimizer_instance(
        dnn_optimizer, learning_rate=_DNN_LEARNING_RATE)
    _check_no_sync_replicas_optimizer(dnn_optimizer)
    if not dnn_hidden_units:
      raise ValueError(
          'dnn_hidden_units must be defined when dnn_feature_columns is '
          'specified.')
    dnn_partitioner = (
        tf.compat.v1.min_max_variable_partitioner(
            max_partitions=num_ps_replicas))
    with tf.compat.v1.variable_scope(
        dnn_parent_scope,
        values=tuple(six.itervalues(features)),
        partitioner=dnn_partitioner) as scope:
      dnn_absolute_scope = scope.name
      dnn_logit_fn = dnn.dnn_logit_fn_builder(
          units=head.logits_dimension,
          hidden_units=dnn_hidden_units,
          feature_columns=dnn_feature_columns,
          activation_fn=dnn_activation_fn,
          dropout=dnn_dropout,
          batch_norm=batch_norm,
          input_layer_partitioner=input_layer_partitioner)
      dnn_logits = dnn_logit_fn(features=features, mode=mode)

  linear_parent_scope = 'linear'

  if not linear_feature_columns:
    linear_logits = None
  else:
    linear_optimizer = optimizers.get_optimizer_instance(
        linear_optimizer,
        learning_rate=_linear_learning_rate(len(linear_feature_columns)))
    _check_no_sync_replicas_optimizer(linear_optimizer)
    with tf.compat.v1.variable_scope(
        linear_parent_scope,
        values=tuple(six.itervalues(features)),
        partitioner=input_layer_partitioner) as scope:
      linear_absolute_scope = scope.name
      logit_fn = linear.linear_logit_fn_builder(
          units=head.logits_dimension,
          feature_columns=linear_feature_columns,
          sparse_combiner=linear_sparse_combiner)
      linear_logits = logit_fn(features=features)
      _add_layer_summary(linear_logits, scope.name)

  # Combine logits and build full model.
  if dnn_logits is not None and linear_logits is not None:
    logits = dnn_logits + linear_logits
  elif dnn_logits is not None:
    logits = dnn_logits
  else:
    logits = linear_logits

  def _train_op_fn(loss):
    """Returns the op to optimize the loss."""
    train_ops = []
    global_step = tf.compat.v1.train.get_global_step()
    if dnn_logits is not None:
      train_ops.append(
          dnn_optimizer.minimize(
              loss,
              var_list=tf.compat.v1.get_collection(
                  tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES,
                  scope=dnn_absolute_scope)))
    if linear_logits is not None:
      train_ops.append(
          linear_optimizer.minimize(
              loss,
              var_list=tf.compat.v1.get_collection(
                  tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES,
                  scope=linear_absolute_scope)))

    train_op = tf.group(*train_ops)
    with tf.control_dependencies([train_op]):
      return tf.compat.v1.assign_add(global_step, 1).op

  return head.create_estimator_spec(
      features=features,
      mode=mode,
      labels=labels,
      train_op_fn=_train_op_fn,
      logits=logits)