in tensorflow_estimator/python/estimator/canned/dnn_linear_combined.py [0:0]
def _dnn_linear_combined_model_fn_v2(
features,
labels,
mode,
head,
linear_feature_columns=None,
linear_optimizer='Ftrl',
dnn_feature_columns=None,
dnn_optimizer='Adagrad',
dnn_hidden_units=None,
dnn_activation_fn=tf.nn.relu,
dnn_dropout=None,
config=None,
batch_norm=False,
linear_sparse_combiner='sum',
loss_reduction=tf.losses.Reduction.SUM_OVER_BATCH_SIZE):
"""Deep Neural Net and Linear combined model_fn.
Args:
features: dict of `Tensor`.
labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of dtype
`int32` or `int64` in the range `[0, n_classes)`.
mode: Defines whether this is training, evaluation or prediction. See
`ModeKeys`.
head: A `Head` instance.
linear_feature_columns: An iterable containing all the feature columns used
by the Linear model.
linear_optimizer: string, `Optimizer` object, or callable that defines the
optimizer to use for training the Linear model. Defaults to the Ftrl
optimizer.
dnn_feature_columns: An iterable containing all the feature columns used by
the DNN model.
dnn_optimizer: string, `Optimizer` object, or callable that defines the
optimizer to use for training the DNN model. Defaults to the Adagrad
optimizer.
dnn_hidden_units: List of hidden units per DNN layer.
dnn_activation_fn: Activation function applied to each DNN layer. If `None`,
will use `tf.nn.relu`.
dnn_dropout: When not `None`, the probability we will drop out a given DNN
coordinate.
config: `RunConfig` object to configure the runtime settings.
batch_norm: Whether to use batch normalization after each hidden layer.
linear_sparse_combiner: A string specifying how to reduce the linear model
if a categorical column is multivalent. One of "mean", "sqrtn", and
"sum".
loss_reduction: One of `tf.keras.losses.Reduction` except `NONE`. Describes
how to reduce training loss over batch. Defaults to `SUM_OVER_BATCH_SIZE`.
Returns:
An `EstimatorSpec` instance.
Raises:
ValueError: If both `linear_feature_columns` and `dnn_features_columns`
are empty at the same time, or `input_layer_partitioner` is missing,
or features has the wrong type.
"""
if not isinstance(features, dict):
raise ValueError('features should be a dictionary of `Tensor`s. '
'Given type: {}'.format(type(features)))
if not linear_feature_columns and not dnn_feature_columns:
raise ValueError(
'Either linear_feature_columns or dnn_feature_columns must be defined.')
del config
# Build DNN Logits.
if not dnn_feature_columns:
dnn_logits = None
else:
if mode == ModeKeys.TRAIN:
dnn_optimizer = optimizers.get_optimizer_instance_v2(
dnn_optimizer, learning_rate=_DNN_LEARNING_RATE)
_check_no_sync_replicas_optimizer(dnn_optimizer)
if not dnn_hidden_units:
raise ValueError(
'dnn_hidden_units must be defined when dnn_feature_columns is '
'specified.')
dnn_logits, dnn_trainable_variables, dnn_update_ops = (
dnn._dnn_model_fn_builder_v2( # pylint: disable=protected-access
units=head.logits_dimension,
hidden_units=dnn_hidden_units,
feature_columns=dnn_feature_columns,
activation_fn=dnn_activation_fn,
dropout=dnn_dropout,
batch_norm=batch_norm,
features=features,
mode=mode))
if not linear_feature_columns:
linear_logits = None
else:
if mode == ModeKeys.TRAIN:
linear_optimizer = optimizers.get_optimizer_instance_v2(
linear_optimizer,
learning_rate=_linear_learning_rate(len(linear_feature_columns)))
_check_no_sync_replicas_optimizer(linear_optimizer)
linear_logits, linear_trainable_variables = (
linear._linear_model_fn_builder_v2( # pylint: disable=protected-access
units=head.logits_dimension,
feature_columns=linear_feature_columns,
sparse_combiner=linear_sparse_combiner,
features=features))
_add_layer_summary(linear_logits, 'linear')
# Combine logits and build full model.
if dnn_logits is not None and linear_logits is not None:
logits = dnn_logits + linear_logits
elif dnn_logits is not None:
logits = dnn_logits
else:
logits = linear_logits
def _train_op_fn(loss):
"""Returns the op to optimize the loss."""
train_ops = []
# Scale loss by number of replicas.
if loss_reduction == tf.losses.Reduction.SUM_OVER_BATCH_SIZE:
num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
if num_replicas > 1:
loss *= (1. / num_replicas)
if dnn_logits is not None:
train_ops.extend(dnn_optimizer.get_updates(loss, dnn_trainable_variables))
if dnn_update_ops is not None:
train_ops.extend(dnn_update_ops)
if linear_logits is not None:
train_ops.extend(
linear_optimizer.get_updates(loss, linear_trainable_variables))
train_op = tf.group(*train_ops)
return train_op
# In TRAIN mode, asssign global_step variable to optimizer.iterations to
# make global_step increased correctly, as Hooks relies on global step as
# step counter. Note that, Only one model's optimizer needs this assignment.
if mode == ModeKeys.TRAIN:
if dnn_logits is not None:
dnn_optimizer.iterations = tf.compat.v1.train.get_or_create_global_step()
else:
linear_optimizer.iterations = \
tf.compat.v1.train.get_or_create_global_step()
return head.create_estimator_spec(
features=features,
mode=mode,
labels=labels,
train_op_fn=_train_op_fn,
logits=logits)