in tensorflow_examples/profiling/resnet_model.py [0:0]
def identity_block(input_tensor,
kernel_size,
filters,
stage,
block,
use_l2_regularizer=True):
"""The identity block is the block that has no conv layer at shortcut.
Args:
input_tensor: input tensor
kernel_size: default 3, the kernel size of middle conv layer at main path
filters: list of integers, the filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
use_l2_regularizer: whether to use L2 regularizer on Conv layer.
Returns:
Output tensor for the block.
"""
filters1, filters2, filters3 = filters
if backend.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = layers.Conv2D(
filters1, (1, 1),
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name=conv_name_base + '2a')(
input_tensor)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2a')(
x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(
filters2,
kernel_size,
padding='same',
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name=conv_name_base + '2b')(
x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2b')(
x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(
filters3, (1, 1),
use_bias=False,
kernel_initializer='he_normal',
kernel_regularizer=_gen_l2_regularizer(use_l2_regularizer),
name=conv_name_base + '2c')(
x)
x = layers.BatchNormalization(
axis=bn_axis,
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON,
name=bn_name_base + '2c')(
x)
x = layers.add([x, input_tensor])
x = layers.Activation('relu')(x)
return x