in tensorflow_examples/lite/model_maker/core/task/configs.py [0:0]
def get_converter_with_quantization(self, converter, **kwargs):
"""Gets TFLite converter with settings for quantization."""
converter.optimizations = self.optimizations
if self.representative_data is not None:
ds = self.representative_data.gen_dataset(
batch_size=1, is_training=False, **kwargs)
converter.representative_dataset = tf.lite.RepresentativeDataset(
_get_representative_dataset_gen(ds, self.quantization_steps))
if self.inference_input_type:
converter.inference_input_type = self.inference_input_type
if self.inference_output_type:
converter.inference_output_type = self.inference_output_type
if self.supported_ops:
converter.target_spec.supported_ops = self.supported_ops
if self.supported_types:
converter.target_spec.supported_types = self.supported_types
if self.experimental_new_quantizer is not None:
converter.experimental_new_quantizer = self.experimental_new_quantizer
return converter