in tensorboard_plugin/tensorboard_plugin_fairness_indicators/plugin.py [0:0]
def _get_evaluation_result(self, request):
run = request.args.get('run')
try:
run = six.ensure_text(run)
except (UnicodeDecodeError, AttributeError):
pass
data = []
try:
eval_result_output_dir = six.ensure_text(
self._multiplexer.Tensors(run, FairnessIndicatorsPlugin.plugin_name)
[0].tensor_proto.string_val[0])
eval_result = tfma.load_eval_result(output_path=eval_result_output_dir)
# TODO(b/141283811): Allow users to choose different model output names
# and class keys in case of multi-output and multi-class model.
data = widget_view.convert_slicing_metrics_to_ui_input(
eval_result.slicing_metrics)
except (KeyError, json_format.ParseError) as error:
logging.info('Error while fetching evaluation data, %s', error)
return http_util.Respond(request, data, content_type='application/json')