tensorflow_gan/python/eval/classifier_metrics.py [447:461]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  input_list1 = tf.split(input_tensor1, num_or_size_splits=num_batches)
  input_list2 = tf.split(input_tensor2, num_or_size_splits=num_batches)

  stack1 = tf.stack(input_list1)
  stack2 = tf.stack(input_list2)

  # Compute the activations using the memory-efficient `map_fn`.
  def compute_activations(elems):
    return tf.map_fn(
        fn=classifier_fn,
        elems=elems,
        parallel_iterations=1,
        back_prop=False,
        swap_memory=True,
        name='RunClassifier')
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



tensorflow_gan/python/eval/classifier_metrics.py [951:965]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  input_list1 = tf.split(input_tensor1, num_or_size_splits=num_batches)
  input_list2 = tf.split(input_tensor2, num_or_size_splits=num_batches)

  stack1 = tf.stack(input_list1)
  stack2 = tf.stack(input_list2)

  # Compute the activations using the memory-efficient `map_fn`.
  def compute_activations(elems):
    return tf.map_fn(
        fn=classifier_fn,
        elems=elems,
        parallel_iterations=1,
        back_prop=False,
        swap_memory=True,
        name='RunClassifier')
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



