mesh_tensorflow/bert/run_classifier.py [540:573]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  def _decode_record(record, name_to_features):
    """Decodes a record to a TensorFlow example."""
    example = tf.parse_single_example(record, name_to_features)

    # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
    # So cast all int64 to int32.
    for name in list(example.keys()):
      t = example[name]
      if t.dtype == tf.int64:
        t = tf.to_int32(t)
      example[name] = t

    return example

  def input_fn(params):
    """The actual input function."""
    batch_size = params["batch_size"]

    # For training, we want a lot of parallel reading and shuffling.
    # For eval, we want no shuffling and parallel reading doesn't matter.
    d = tf.data.TFRecordDataset(input_file)
    if is_training:
      d = d.repeat()
      d = d.shuffle(buffer_size=100)

    d = d.apply(
        tf.data.experimental.map_and_batch(
            lambda record: _decode_record(record, name_to_features),
            batch_size=batch_size,
            drop_remainder=drop_remainder))

    return d

  return input_fn
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



mesh_tensorflow/bert/run_squad.py [780:813]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  def _decode_record(record, name_to_features):
    """Decodes a record to a TensorFlow example."""
    example = tf.parse_single_example(record, name_to_features)

    # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
    # So cast all int64 to int32.
    for name in list(example.keys()):
      t = example[name]
      if t.dtype == tf.int64:
        t = tf.to_int32(t)
      example[name] = t

    return example

  def input_fn(params):
    """The actual input function."""
    batch_size = params["batch_size"]

    # For training, we want a lot of parallel reading and shuffling.
    # For eval, we want no shuffling and parallel reading doesn't matter.
    d = tf.data.TFRecordDataset(input_file)
    if is_training:
      d = d.repeat()
      d = d.shuffle(buffer_size=100)

    d = d.apply(
        tf.data.experimental.map_and_batch(
            lambda record: _decode_record(record, name_to_features),
            batch_size=batch_size,
            drop_remainder=drop_remainder))

    return d

  return input_fn
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



