def write_predictions()

in mesh_tensorflow/bert/run_squad.py [0:0]


def write_predictions(all_examples, all_features, all_results, n_best_size,
                      max_answer_length, do_lower_case, output_prediction_file,
                      output_nbest_file, output_null_log_odds_file):
  """Write final predictions to the json file and log-odds of null if needed."""
  tf.logging.info("Writing predictions to: %s" % (output_prediction_file))
  tf.logging.info("Writing nbest to: %s" % (output_nbest_file))

  example_index_to_features = collections.defaultdict(list)
  for feature in all_features:
    example_index_to_features[feature.example_index].append(feature)

  unique_id_to_result = {}
  for result in all_results:
    unique_id_to_result[result.unique_id] = result

  _PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
      "PrelimPrediction",
      ["feature_index", "start_index", "end_index", "start_logit", "end_logit"])

  all_predictions = collections.OrderedDict()
  all_nbest_json = collections.OrderedDict()
  scores_diff_json = collections.OrderedDict()

  for (example_index, example) in enumerate(all_examples):
    features = example_index_to_features[example_index]

    prelim_predictions = []
    # keep track of the minimum score of null start+end of position 0
    score_null = 1000000  # large and positive
    min_null_feature_index = 0  # the paragraph slice with min mull score
    null_start_logit = 0  # the start logit at the slice with min null score
    null_end_logit = 0  # the end logit at the slice with min null score
    for (feature_index, feature) in enumerate(features):
      result = unique_id_to_result[feature.unique_id]
      start_indexes = _get_best_indexes(result.start_logits, n_best_size)
      end_indexes = _get_best_indexes(result.end_logits, n_best_size)
      # if we could have irrelevant answers, get the min score of irrelevant
      if FLAGS.version_2_with_negative:
        feature_null_score = result.start_logits[0] + result.end_logits[0]
        if feature_null_score < score_null:
          score_null = feature_null_score
          min_null_feature_index = feature_index
          null_start_logit = result.start_logits[0]
          null_end_logit = result.end_logits[0]
      for start_index in start_indexes:
        for end_index in end_indexes:
          # We could hypothetically create invalid predictions, e.g., predict
          # that the start of the span is in the question. We throw out all
          # invalid predictions.
          if start_index >= len(feature.tokens):
            continue
          if end_index >= len(feature.tokens):
            continue
          if start_index not in feature.token_to_orig_map:
            continue
          if end_index not in feature.token_to_orig_map:
            continue
          if not feature.token_is_max_context.get(start_index, False):
            continue
          if end_index < start_index:
            continue
          length = end_index - start_index + 1
          if length > max_answer_length:
            continue
          prelim_predictions.append(
              _PrelimPrediction(
                  feature_index=feature_index,
                  start_index=start_index,
                  end_index=end_index,
                  start_logit=result.start_logits[start_index],
                  end_logit=result.end_logits[end_index]))

    if FLAGS.version_2_with_negative:
      prelim_predictions.append(
          _PrelimPrediction(
              feature_index=min_null_feature_index,
              start_index=0,
              end_index=0,
              start_logit=null_start_logit,
              end_logit=null_end_logit))
    prelim_predictions = sorted(
        prelim_predictions,
        key=lambda x: (x.start_logit + x.end_logit),
        reverse=True)

    _NbestPrediction = collections.namedtuple(  # pylint: disable=invalid-name
        "NbestPrediction", ["text", "start_logit", "end_logit"])

    seen_predictions = {}
    nbest = []
    for pred in prelim_predictions:
      if len(nbest) >= n_best_size:
        break
      feature = features[pred.feature_index]
      if pred.start_index > 0:  # this is a non-null prediction
        tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
        orig_doc_start = feature.token_to_orig_map[pred.start_index]
        orig_doc_end = feature.token_to_orig_map[pred.end_index]
        orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
        tok_text = " ".join(tok_tokens)

        # De-tokenize WordPieces that have been split off.
        tok_text = tok_text.replace(" ##", "")
        tok_text = tok_text.replace("##", "")

        # Clean whitespace
        tok_text = tok_text.strip()
        tok_text = " ".join(tok_text.split())
        orig_text = " ".join(orig_tokens)

        final_text = get_final_text(tok_text, orig_text, do_lower_case)
        if final_text in seen_predictions:
          continue

        seen_predictions[final_text] = True
      else:
        final_text = ""
        seen_predictions[final_text] = True

      nbest.append(
          _NbestPrediction(
              text=final_text,
              start_logit=pred.start_logit,
              end_logit=pred.end_logit))

    # if we didn't inlude the empty option in the n-best, inlcude it
    if FLAGS.version_2_with_negative:
      if "" not in seen_predictions:
        nbest.append(
            _NbestPrediction(
                text="", start_logit=null_start_logit,
                end_logit=null_end_logit))
    # In very rare edge cases we could have no valid predictions. So we
    # just create a nonce prediction in this case to avoid failure.
    if not nbest:
      nbest.append(
          _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))

    assert len(nbest) >= 1

    total_scores = []
    best_non_null_entry = None
    for entry in nbest:
      total_scores.append(entry.start_logit + entry.end_logit)
      if not best_non_null_entry:
        if entry.text:
          best_non_null_entry = entry

    probs = _compute_softmax(total_scores)

    nbest_json = []
    for (i, entry) in enumerate(nbest):
      output = collections.OrderedDict()
      output["text"] = entry.text
      output["probability"] = probs[i]
      output["start_logit"] = entry.start_logit
      output["end_logit"] = entry.end_logit
      nbest_json.append(output)

    assert len(nbest_json) >= 1

    if not FLAGS.version_2_with_negative:
      all_predictions[example.qas_id] = nbest_json[0]["text"]
    else:
      # predict "" iff the null score - the score of best non-null > threshold
      score_diff = score_null - best_non_null_entry.start_logit - (
          best_non_null_entry.end_logit)
      scores_diff_json[example.qas_id] = score_diff
      if score_diff > FLAGS.null_score_diff_threshold:
        all_predictions[example.qas_id] = ""
      else:
        all_predictions[example.qas_id] = best_non_null_entry.text

    all_nbest_json[example.qas_id] = nbest_json

  with tf.gfile.GFile(output_prediction_file, "w") as writer:
    writer.write(json.dumps(all_predictions, indent=4) + "\n")

  with tf.gfile.GFile(output_nbest_file, "w") as writer:
    writer.write(json.dumps(all_nbest_json, indent=4) + "\n")

  if FLAGS.version_2_with_negative:
    with tf.gfile.GFile(output_null_log_odds_file, "w") as writer:
      writer.write(json.dumps(scores_diff_json, indent=4) + "\n")