tensorflow_model_optimization/python/core/quantization/keras/default_8bit/default_8bit_transforms.py [592:609]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    layer_config = keras.layers.serialize(quant_layer)
    layer_config['name'] = quant_layer.name

    quant_layer_node = LayerNode(
        layer_config,
        input_layers=[match_layer])

    return quant_layer_node

  def custom_objects(self):
    return {
        'QuantizeLayer': quantize_layer.QuantizeLayer,
        'MovingAverageQuantizer': quantizers.MovingAverageQuantizer,
        'AllValuesQuantizer': quantizers.AllValuesQuantizer
    }


class ConcatTransform(transforms.Transform):
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



tensorflow_model_optimization/python/core/quantization/keras/experimental/default_n_bit/default_n_bit_transforms.py [548:565]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    layer_config = keras.layers.serialize(quant_layer)
    layer_config['name'] = quant_layer.name

    quant_layer_node = LayerNode(
        layer_config,
        input_layers=[match_layer])

    return quant_layer_node

  def custom_objects(self):
    return {
        'QuantizeLayer': quantize_layer.QuantizeLayer,
        'MovingAverageQuantizer': quantizers.MovingAverageQuantizer,
        'AllValuesQuantizer': quantizers.AllValuesQuantizer
    }


class ConcatTransform(transforms.Transform):
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



