tensorflow_model_remediation/min_diff/keras/models/min_diff_model.py [736:754]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        return dill.loads(value)
      return value  # No transformation applied.

    return {k: _deserialize_value(k, v) for k, v in config.items()}

  @classmethod
  @docs.do_not_doc_in_subclasses
  def from_config(cls, config):

    """Creates a `MinDiffModel` instance from the config.

    Any subclass with additional attributes or a different initialization
    signature will need to override this method or `get_config`.

    Returns:
      A new `MinDiffModel` instance corresponding to `config`.
    """
    config = cls._deserialize_config(config)
    return cls(**config)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



tensorflow_model_remediation/min_diff/losses/base_loss.py [377:395]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        return dill.loads(value)
      return value  # No transformation applied

    return {k: _deserialize_value(k, v) for k, v in config.items()}

  @classmethod
  @docs.do_not_doc_in_subclasses
  def from_config(cls, config):

    """Creates a `MinDiffLoss` instance from the config.

    Any subclass with additional attributes or a different initialization
    signature will need to override this method or `get_config`.

    Returns:
      A new `MinDiffLoss` instance corresponding to `config`.
    """
    config = cls._deserialize_config(config)
    return cls(**config)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



