in tensorflow_model_remediation/tools/tutorials_utils/min_diff_keras_utils.py [0:0]
def create_keras_sequential_model(
hub_url='https://tfhub.dev/google/tf2-preview/nnlm-en-dim128/1',
cnn_filter_sizes=[128, 128, 128],
cnn_kernel_sizes=[5, 5, 5],
cnn_pooling_sizes=[5, 5, 40]):
"""Create baseline keras sequential model."""
model = tf.keras.Sequential()
# Embedding layer.
hub_layer = _create_embedding_layer(hub_url)
model.add(hub_layer)
model.add(tf.keras.layers.Reshape((1, 128)))
# Convolution layers.
for filter_size, kernel_size, pool_size in zip(cnn_filter_sizes,
cnn_kernel_sizes,
cnn_pooling_sizes):
model.add(
tf.keras.layers.Conv1D(
filter_size, kernel_size, activation='relu', padding='same'))
model.add(tf.keras.layers.MaxPooling1D(pool_size, padding='same'))
# Flatten, fully connected, and output layers.
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
return model