in tensorflow_model_remediation/tools/build_api_docs.py [0:0]
def execute(output_dir, code_url_prefix, search_hints, site_path):
"""Builds API docs for TensorFlow Model Remediation."""
# Hide `Model` methods with a few exceptions.
for cls in [tf.Module, tf.keras.layers.Layer, tf.keras.Model]:
doc_controls.decorate_all_class_attributes(
decorator=doc_controls.do_not_doc_in_subclasses,
cls=cls,
skip=["__init__", "save", "compile", "call"])
# Hide `Loss` methods with a few exceptions.
for cls in [tf.keras.losses.Loss]:
doc_controls.decorate_all_class_attributes(
decorator=doc_controls.do_not_doc_in_subclasses,
cls=cls,
skip=["__init__", "call"])
# Hide `MinDiffLoss` and `MinDiffKernel` __call__ method.
for cls in [
tfmr.min_diff.losses.MinDiffLoss, tfmr.min_diff.losses.MinDiffKernel
]:
doc_controls.decorate_all_class_attributes(
decorator=doc_controls.do_not_doc_in_subclasses,
cls=cls,
skip=["__init__"])
# Get around the decorator on Layer.call
delattr(tf.keras.layers.Layer.call,
"_tf_docs_tools_for_subclass_implementers")
# Delete common module when documenting. There is nothing there for users
# quite yet.
del tfmr.common
try:
del tfmr.tools
except AttributeError:
pass
doc_generator = generate_lib.DocGenerator(
root_title="TensorFlow Model Remediation",
py_modules=[("model_remediation", tfmr)],
base_dir=os.path.dirname(tfmr.__file__),
search_hints=search_hints,
code_url_prefix=code_url_prefix,
site_path=site_path,
callbacks=[
public_api.explicit_package_contents_filter,
public_api.local_definitions_filter
])
doc_generator.build(output_dir)