def execute()

in tensorflow_model_remediation/tools/build_api_docs.py [0:0]


def execute(output_dir, code_url_prefix, search_hints, site_path):
  """Builds API docs for TensorFlow Model Remediation."""

  # Hide `Model` methods with a few exceptions.
  for cls in [tf.Module, tf.keras.layers.Layer, tf.keras.Model]:
    doc_controls.decorate_all_class_attributes(
        decorator=doc_controls.do_not_doc_in_subclasses,
        cls=cls,
        skip=["__init__", "save", "compile", "call"])

  # Hide `Loss` methods with a few exceptions.
  for cls in [tf.keras.losses.Loss]:
    doc_controls.decorate_all_class_attributes(
        decorator=doc_controls.do_not_doc_in_subclasses,
        cls=cls,
        skip=["__init__", "call"])

  # Hide `MinDiffLoss` and `MinDiffKernel` __call__ method.
  for cls in [
      tfmr.min_diff.losses.MinDiffLoss, tfmr.min_diff.losses.MinDiffKernel
  ]:
    doc_controls.decorate_all_class_attributes(
        decorator=doc_controls.do_not_doc_in_subclasses,
        cls=cls,
        skip=["__init__"])

  # Get around the decorator on Layer.call
  delattr(tf.keras.layers.Layer.call,
          "_tf_docs_tools_for_subclass_implementers")

  # Delete common module when documenting. There is nothing there for users
  # quite yet.
  del tfmr.common

  try:
    del tfmr.tools
  except AttributeError:
    pass

  doc_generator = generate_lib.DocGenerator(
      root_title="TensorFlow Model Remediation",
      py_modules=[("model_remediation", tfmr)],
      base_dir=os.path.dirname(tfmr.__file__),
      search_hints=search_hints,
      code_url_prefix=code_url_prefix,
      site_path=site_path,
      callbacks=[
          public_api.explicit_package_contents_filter,
          public_api.local_definitions_filter
      ])

  doc_generator.build(output_dir)