def convert_examples_to_features()

in official/nlp/xlnet/squad_utils.py [0:0]


def convert_examples_to_features(examples, sp_model, max_seq_length, doc_stride,
                                 max_query_length, is_training, output_fn,
                                 uncased):
  """Loads a data file into a list of `InputBatch`s."""

  cnt_pos, cnt_neg = 0, 0
  unique_id = 1000000000
  max_N, max_M = 1024, 1024
  f = np.zeros((max_N, max_M), dtype=np.float32)

  for (example_index, example) in enumerate(examples):
    # pylint: disable=logging-format-interpolation
    if example_index % 100 == 0:
      logging.info("Converting {}/{} pos {} neg {}".format(
          example_index, len(examples), cnt_pos, cnt_neg))

    query_tokens = preprocess_utils.encode_ids(
        sp_model,
        preprocess_utils.preprocess_text(example.question_text, lower=uncased))

    if len(query_tokens) > max_query_length:
      query_tokens = query_tokens[0:max_query_length]

    paragraph_text = example.paragraph_text
    para_tokens = preprocess_utils.encode_pieces(
        sp_model,
        preprocess_utils.preprocess_text(example.paragraph_text, lower=uncased))

    chartok_to_tok_index = []
    tok_start_to_chartok_index = []
    tok_end_to_chartok_index = []
    char_cnt = 0
    for i, token in enumerate(para_tokens):
      chartok_to_tok_index.extend([i] * len(token))
      tok_start_to_chartok_index.append(char_cnt)
      char_cnt += len(token)
      tok_end_to_chartok_index.append(char_cnt - 1)

    tok_cat_text = "".join(para_tokens).replace(SPIECE_UNDERLINE, " ")
    N, M = len(paragraph_text), len(tok_cat_text)

    if N > max_N or M > max_M:
      max_N = max(N, max_N)
      max_M = max(M, max_M)
      f = np.zeros((max_N, max_M), dtype=np.float32)
      gc.collect()

    g = {}

    # pylint: disable=cell-var-from-loop
    def _lcs_match(max_dist):
      """LCS match."""
      f.fill(0)
      g.clear()

      ### longest common sub sequence
      # f[i, j] = max(f[i - 1, j], f[i, j - 1], f[i - 1, j - 1] + match(i, j))
      for i in range(N):

        # note(zhiliny):
        # unlike standard LCS, this is specifically optimized for the setting
        # because the mismatch between sentence pieces and original text will
        # be small
        for j in range(i - max_dist, i + max_dist):
          if j >= M or j < 0:
            continue

          if i > 0:
            g[(i, j)] = 0
            f[i, j] = f[i - 1, j]

          if j > 0 and f[i, j - 1] > f[i, j]:
            g[(i, j)] = 1
            f[i, j] = f[i, j - 1]

          f_prev = f[i - 1, j - 1] if i > 0 and j > 0 else 0
          if (preprocess_utils.preprocess_text(
              paragraph_text[i], lower=uncased,
              remove_space=False) == tok_cat_text[j] and f_prev + 1 > f[i, j]):
            g[(i, j)] = 2
            f[i, j] = f_prev + 1

    max_dist = abs(N - M) + 5
    for _ in range(2):
      _lcs_match(max_dist)
      if f[N - 1, M - 1] > 0.8 * N:
        break
      max_dist *= 2

    orig_to_chartok_index = [None] * N
    chartok_to_orig_index = [None] * M
    i, j = N - 1, M - 1
    while i >= 0 and j >= 0:
      if (i, j) not in g:
        break
      if g[(i, j)] == 2:
        orig_to_chartok_index[i] = j
        chartok_to_orig_index[j] = i
        i, j = i - 1, j - 1
      elif g[(i, j)] == 1:
        j = j - 1
      else:
        i = i - 1

    if all(
        v is None for v in orig_to_chartok_index) or f[N - 1, M - 1] < 0.8 * N:
      print("MISMATCH DETECTED!")
      continue

    tok_start_to_orig_index = []
    tok_end_to_orig_index = []
    for i in range(len(para_tokens)):
      start_chartok_pos = tok_start_to_chartok_index[i]
      end_chartok_pos = tok_end_to_chartok_index[i]
      start_orig_pos = _convert_index(
          chartok_to_orig_index, start_chartok_pos, N, is_start=True)
      end_orig_pos = _convert_index(
          chartok_to_orig_index, end_chartok_pos, N, is_start=False)

      tok_start_to_orig_index.append(start_orig_pos)
      tok_end_to_orig_index.append(end_orig_pos)

    if not is_training:
      tok_start_position = tok_end_position = None

    if is_training and example.is_impossible:
      tok_start_position = -1
      tok_end_position = -1

    if is_training and not example.is_impossible:
      start_position = example.start_position
      end_position = start_position + len(example.orig_answer_text) - 1

      start_chartok_pos = _convert_index(
          orig_to_chartok_index, start_position, is_start=True)
      tok_start_position = chartok_to_tok_index[start_chartok_pos]

      end_chartok_pos = _convert_index(
          orig_to_chartok_index, end_position, is_start=False)
      tok_end_position = chartok_to_tok_index[end_chartok_pos]
      assert tok_start_position <= tok_end_position

    def _piece_to_id(x):
      if six.PY2 and isinstance(x, unicode):  # pylint: disable=undefined-variable
        x = x.encode("utf-8")
      return sp_model.PieceToId(x)

    all_doc_tokens = list(map(_piece_to_id, para_tokens))

    # The -3 accounts for [CLS], [SEP] and [SEP]
    max_tokens_for_doc = max_seq_length - len(query_tokens) - 3

    # We can have documents that are longer than the maximum sequence length.
    # To deal with this we do a sliding window approach, where we take chunks
    # of the up to our max length with a stride of `doc_stride`.
    _DocSpan = collections.namedtuple(  # pylint: disable=invalid-name
        "DocSpan", ["start", "length"])
    doc_spans = []
    start_offset = 0
    while start_offset < len(all_doc_tokens):
      length = len(all_doc_tokens) - start_offset
      if length > max_tokens_for_doc:
        length = max_tokens_for_doc
      doc_spans.append(_DocSpan(start=start_offset, length=length))
      if start_offset + length == len(all_doc_tokens):
        break
      start_offset += min(length, doc_stride)

    for (doc_span_index, doc_span) in enumerate(doc_spans):
      tokens = []
      token_is_max_context = {}
      segment_ids = []
      p_mask = []

      cur_tok_start_to_orig_index = []
      cur_tok_end_to_orig_index = []

      for i in range(doc_span.length):
        split_token_index = doc_span.start + i

        cur_tok_start_to_orig_index.append(
            tok_start_to_orig_index[split_token_index])
        cur_tok_end_to_orig_index.append(
            tok_end_to_orig_index[split_token_index])

        is_max_context = _check_is_max_context(doc_spans, doc_span_index,
                                               split_token_index)
        token_is_max_context[len(tokens)] = is_max_context
        tokens.append(all_doc_tokens[split_token_index])
        segment_ids.append(data_utils.SEG_ID_P)
        p_mask.append(0)

      paragraph_len = len(tokens)

      tokens.append(data_utils.SEP_ID)
      segment_ids.append(data_utils.SEG_ID_P)
      p_mask.append(1)

      # note(zhiliny): we put P before Q
      # because during pretraining, B is always shorter than A
      for token in query_tokens:
        tokens.append(token)
        segment_ids.append(data_utils.SEG_ID_Q)
        p_mask.append(1)
      tokens.append(data_utils.SEP_ID)
      segment_ids.append(data_utils.SEG_ID_Q)
      p_mask.append(1)

      cls_index = len(segment_ids)
      tokens.append(data_utils.CLS_ID)
      segment_ids.append(data_utils.SEG_ID_CLS)
      p_mask.append(0)

      input_ids = tokens

      # The mask has 0 for real tokens and 1 for padding tokens. Only real
      # tokens are attended to.
      input_mask = [0] * len(input_ids)

      # Zero-pad up to the sequence length.
      while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(1)
        segment_ids.append(data_utils.SEG_ID_PAD)
        p_mask.append(1)

      assert len(input_ids) == max_seq_length
      assert len(input_mask) == max_seq_length
      assert len(segment_ids) == max_seq_length
      assert len(p_mask) == max_seq_length

      span_is_impossible = example.is_impossible
      start_position = None
      end_position = None
      if is_training and not span_is_impossible:
        # For training, if our document chunk does not contain an annotation
        # we throw it out, since there is nothing to predict.
        doc_start = doc_span.start
        doc_end = doc_span.start + doc_span.length - 1
        out_of_span = False
        if not (tok_start_position >= doc_start and
                tok_end_position <= doc_end):
          out_of_span = True
        if out_of_span:
          # continue
          start_position = 0
          end_position = 0
          span_is_impossible = True
        else:
          # note: we put P before Q, so doc_offset should be zero.
          # doc_offset = len(query_tokens) + 2
          doc_offset = 0
          start_position = tok_start_position - doc_start + doc_offset
          end_position = tok_end_position - doc_start + doc_offset

      if is_training and span_is_impossible:
        start_position = cls_index
        end_position = cls_index

      if example_index < 20:
        logging.info("*** Example ***")
        logging.info("unique_id: %s", unique_id)
        logging.info("example_index: %s", example_index)
        logging.info("doc_span_index: %s", doc_span_index)
        logging.info("tok_start_to_orig_index: %s",
                     " ".join([str(x) for x in cur_tok_start_to_orig_index]))
        logging.info("tok_end_to_orig_index: %s",
                     " ".join([str(x) for x in cur_tok_end_to_orig_index]))
        logging.info(
            "token_is_max_context: %s", " ".join([
                "%d:%s" % (x, y)
                for (x, y) in six.iteritems(token_is_max_context)
            ]))
        logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
        logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
        logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))

        if is_training and span_is_impossible:
          logging.info("impossible example span")

        if is_training and not span_is_impossible:
          pieces = [
              sp_model.IdToPiece(token)
              for token in tokens[start_position:(end_position + 1)]
          ]
          answer_text = sp_model.DecodePieces(pieces)
          logging.info("start_position: %d", start_position)
          logging.info("end_position: %d", end_position)
          logging.info("answer: %s",
                       preprocess_utils.printable_text(answer_text))

          # With multi processing, the example_index is actually the index
          # within the current process therefore we use example_index=None to
          # avoid being used in the future. # The current code does not use
          # example_index of training data.
      if is_training:
        feat_example_index = None
      else:
        feat_example_index = example_index

      feature = InputFeatures(
          unique_id=unique_id,
          example_index=feat_example_index,
          doc_span_index=doc_span_index,
          tok_start_to_orig_index=cur_tok_start_to_orig_index,
          tok_end_to_orig_index=cur_tok_end_to_orig_index,
          token_is_max_context=token_is_max_context,
          input_ids=input_ids,
          input_mask=input_mask,
          p_mask=p_mask,
          segment_ids=segment_ids,
          paragraph_len=paragraph_len,
          cls_index=cls_index,
          start_position=start_position,
          end_position=end_position,
          is_impossible=span_is_impossible)

      # Run callback
      output_fn(feature)

      unique_id += 1
      if span_is_impossible:
        cnt_neg += 1
      else:
        cnt_pos += 1

  logging.info("Total number of instances: %d = pos %d + neg %d",
               cnt_pos + cnt_neg, cnt_pos, cnt_neg)