in research/efficient-hrl/train.py [0:0]
def train_uvf(train_dir,
environment=None,
num_bin_actions=3,
agent_class=None,
meta_agent_class=None,
state_preprocess_class=None,
inverse_dynamics_class=None,
exp_action_wrapper=None,
replay_buffer=None,
meta_replay_buffer=None,
replay_num_steps=1,
meta_replay_num_steps=1,
critic_optimizer=None,
actor_optimizer=None,
meta_critic_optimizer=None,
meta_actor_optimizer=None,
repr_optimizer=None,
relabel_contexts=False,
meta_relabel_contexts=False,
batch_size=64,
repeat_size=0,
num_episodes_train=2000,
initial_episodes=2,
initial_steps=None,
num_updates_per_observation=1,
num_collect_per_update=1,
num_collect_per_meta_update=1,
gamma=1.0,
meta_gamma=1.0,
reward_scale_factor=1.0,
target_update_period=1,
should_stop_early=None,
clip_gradient_norm=0.0,
summarize_gradients=False,
debug_summaries=False,
log_every_n_steps=100,
prefetch_queue_capacity=2,
policy_save_dir='policy',
save_policy_every_n_steps=1000,
save_policy_interval_secs=0,
replay_context_ratio=0.0,
next_state_as_context_ratio=0.0,
state_index=0,
zero_timer_ratio=0.0,
timer_index=-1,
debug=False,
max_policies_to_save=None,
max_steps_per_episode=None,
load_path=LOAD_PATH):
"""Train an agent."""
tf_env = create_maze_env.TFPyEnvironment(environment)
observation_spec = [tf_env.observation_spec()]
action_spec = [tf_env.action_spec()]
max_steps_per_episode = max_steps_per_episode or tf_env.pyenv.max_episode_steps
assert max_steps_per_episode, 'max_steps_per_episode need to be set'
if initial_steps is None:
initial_steps = initial_episodes * max_steps_per_episode
if agent_class.ACTION_TYPE == 'discrete':
assert False
else:
assert agent_class.ACTION_TYPE == 'continuous'
assert agent_class.ACTION_TYPE == meta_agent_class.ACTION_TYPE
with tf.variable_scope('meta_agent'):
meta_agent = meta_agent_class(
observation_spec,
action_spec,
tf_env,
debug_summaries=debug_summaries)
meta_agent.set_replay(replay=meta_replay_buffer)
with tf.variable_scope('uvf_agent'):
uvf_agent = agent_class(
observation_spec,
action_spec,
tf_env,
debug_summaries=debug_summaries)
uvf_agent.set_meta_agent(agent=meta_agent)
uvf_agent.set_replay(replay=replay_buffer)
with tf.variable_scope('state_preprocess'):
state_preprocess = state_preprocess_class()
with tf.variable_scope('inverse_dynamics'):
inverse_dynamics = inverse_dynamics_class(
meta_agent.sub_context_as_action_specs[0])
# Create counter variables
global_step = tf.contrib.framework.get_or_create_global_step()
num_episodes = tf.Variable(0, dtype=tf.int64, name='num_episodes')
num_resets = tf.Variable(0, dtype=tf.int64, name='num_resets')
num_updates = tf.Variable(0, dtype=tf.int64, name='num_updates')
num_meta_updates = tf.Variable(0, dtype=tf.int64, name='num_meta_updates')
episode_rewards = tf.Variable([0.] * 100, name='episode_rewards')
episode_meta_rewards = tf.Variable([0.] * 100, name='episode_meta_rewards')
# Create counter variables summaries
train_utils.create_counter_summaries([
('environment_steps', global_step),
('num_episodes', num_episodes),
('num_resets', num_resets),
('num_updates', num_updates),
('num_meta_updates', num_meta_updates),
('replay_buffer_adds', replay_buffer.get_num_adds()),
('meta_replay_buffer_adds', meta_replay_buffer.get_num_adds()),
])
tf.summary.scalar('avg_episode_rewards',
tf.reduce_mean(episode_rewards[1:]))
tf.summary.scalar('avg_episode_meta_rewards',
tf.reduce_mean(episode_meta_rewards[1:]))
tf.summary.histogram('episode_rewards', episode_rewards[1:])
tf.summary.histogram('episode_meta_rewards', episode_meta_rewards[1:])
# Create init ops
action_fn = uvf_agent.action
action_fn = uvf_agent.add_noise_fn(action_fn, global_step=None)
meta_action_fn = meta_agent.action
meta_action_fn = meta_agent.add_noise_fn(meta_action_fn, global_step=None)
meta_actions_fn = meta_agent.actions
meta_actions_fn = meta_agent.add_noise_fn(meta_actions_fn, global_step=None)
init_collect_experience_op = collect_experience(
tf_env,
uvf_agent,
meta_agent,
state_preprocess,
replay_buffer,
meta_replay_buffer,
action_fn,
meta_action_fn,
environment_steps=global_step,
num_episodes=num_episodes,
num_resets=num_resets,
episode_rewards=episode_rewards,
episode_meta_rewards=episode_meta_rewards,
store_context=True,
disable_agent_reset=False,
)
# Create train ops
collect_experience_op = collect_experience(
tf_env,
uvf_agent,
meta_agent,
state_preprocess,
replay_buffer,
meta_replay_buffer,
action_fn,
meta_action_fn,
environment_steps=global_step,
num_episodes=num_episodes,
num_resets=num_resets,
episode_rewards=episode_rewards,
episode_meta_rewards=episode_meta_rewards,
store_context=True,
disable_agent_reset=False,
)
train_op_list = []
repr_train_op = tf.constant(0.0)
for mode in ['meta', 'nometa']:
if mode == 'meta':
agent = meta_agent
buff = meta_replay_buffer
critic_opt = meta_critic_optimizer
actor_opt = meta_actor_optimizer
relabel = meta_relabel_contexts
num_steps = meta_replay_num_steps
my_gamma = meta_gamma,
n_updates = num_meta_updates
else:
agent = uvf_agent
buff = replay_buffer
critic_opt = critic_optimizer
actor_opt = actor_optimizer
relabel = relabel_contexts
num_steps = replay_num_steps
my_gamma = gamma
n_updates = num_updates
with tf.name_scope(mode):
batch = buff.get_random_batch(batch_size, num_steps=num_steps)
states, actions, rewards, discounts, next_states = batch[:5]
with tf.name_scope('Reward'):
tf.summary.scalar('average_step_reward', tf.reduce_mean(rewards))
rewards *= reward_scale_factor
batch_queue = slim.prefetch_queue.prefetch_queue(
[states, actions, rewards, discounts, next_states] + batch[5:],
capacity=prefetch_queue_capacity,
name='batch_queue')
batch_dequeue = batch_queue.dequeue()
if repeat_size > 0:
batch_dequeue = [
tf.tile(batch, (repeat_size+1,) + (1,) * (batch.shape.ndims - 1))
for batch in batch_dequeue
]
batch_size *= (repeat_size + 1)
states, actions, rewards, discounts, next_states = batch_dequeue[:5]
if mode == 'meta':
low_states = batch_dequeue[5]
low_actions = batch_dequeue[6]
low_state_reprs = state_preprocess(low_states)
state_reprs = state_preprocess(states)
next_state_reprs = state_preprocess(next_states)
if mode == 'meta': # Re-label meta-action
prev_actions = actions
if FLAGS.goal_sample_strategy == 'None':
pass
elif FLAGS.goal_sample_strategy == 'FuN':
actions = inverse_dynamics.sample(state_reprs, next_state_reprs, 1, prev_actions, sc=0.1)
actions = tf.stop_gradient(actions)
elif FLAGS.goal_sample_strategy == 'sample':
actions = sample_best_meta_actions(state_reprs, next_state_reprs, prev_actions,
low_states, low_actions, low_state_reprs,
inverse_dynamics, uvf_agent, k=10)
else:
assert False
if state_preprocess.trainable and mode == 'meta':
# Representation learning is based on meta-transitions, but is trained
# along with low-level policy updates.
repr_loss, _, _ = state_preprocess.loss(states, next_states, low_actions, low_states)
repr_train_op = slim.learning.create_train_op(
repr_loss,
repr_optimizer,
global_step=None,
update_ops=None,
summarize_gradients=summarize_gradients,
clip_gradient_norm=clip_gradient_norm,
variables_to_train=state_preprocess.get_trainable_vars(),)
# Get contexts for training
contexts, next_contexts = agent.sample_contexts(
mode='train', batch_size=batch_size,
state=states, next_state=next_states,
)
if not relabel: # Re-label context (in the style of TDM or HER).
contexts, next_contexts = (
batch_dequeue[-2*len(contexts):-1*len(contexts)],
batch_dequeue[-1*len(contexts):])
merged_states = agent.merged_states(states, contexts)
merged_next_states = agent.merged_states(next_states, next_contexts)
if mode == 'nometa':
context_rewards, context_discounts = agent.compute_rewards(
'train', state_reprs, actions, rewards, next_state_reprs, contexts)
elif mode == 'meta': # Meta-agent uses sum of rewards, not context-specific rewards.
_, context_discounts = agent.compute_rewards(
'train', states, actions, rewards, next_states, contexts)
context_rewards = rewards
if agent.gamma_index is not None:
context_discounts *= tf.cast(
tf.reshape(contexts[agent.gamma_index], (-1,)),
dtype=context_discounts.dtype)
else: context_discounts *= my_gamma
critic_loss = agent.critic_loss(merged_states, actions,
context_rewards, context_discounts,
merged_next_states)
critic_loss = tf.reduce_mean(critic_loss)
actor_loss = agent.actor_loss(merged_states, actions,
context_rewards, context_discounts,
merged_next_states)
actor_loss *= tf.to_float( # Only update actor every N steps.
tf.equal(n_updates % target_update_period, 0))
critic_train_op = slim.learning.create_train_op(
critic_loss,
critic_opt,
global_step=n_updates,
update_ops=None,
summarize_gradients=summarize_gradients,
clip_gradient_norm=clip_gradient_norm,
variables_to_train=agent.get_trainable_critic_vars(),)
critic_train_op = uvf_utils.tf_print(
critic_train_op, [critic_train_op],
message='critic_loss',
print_freq=1000,
name='critic_loss')
train_op_list.append(critic_train_op)
if actor_loss is not None:
actor_train_op = slim.learning.create_train_op(
actor_loss,
actor_opt,
global_step=None,
update_ops=None,
summarize_gradients=summarize_gradients,
clip_gradient_norm=clip_gradient_norm,
variables_to_train=agent.get_trainable_actor_vars(),)
actor_train_op = uvf_utils.tf_print(
actor_train_op, [actor_train_op],
message='actor_loss',
print_freq=1000,
name='actor_loss')
train_op_list.append(actor_train_op)
assert len(train_op_list) == 4
# Update targets should happen after the networks have been updated.
with tf.control_dependencies(train_op_list[2:]):
update_targets_op = uvf_utils.periodically(
uvf_agent.update_targets, target_update_period, 'update_targets')
if meta_agent is not None:
with tf.control_dependencies(train_op_list[:2]):
update_meta_targets_op = uvf_utils.periodically(
meta_agent.update_targets, target_update_period, 'update_targets')
assert_op = tf.Assert( # Hack to get training to stop.
tf.less_equal(global_step, 200 + num_episodes_train * max_steps_per_episode),
[global_step])
with tf.control_dependencies([update_targets_op, assert_op]):
train_op = tf.add_n(train_op_list[2:], name='post_update_targets')
# Representation training steps on every low-level policy training step.
train_op += repr_train_op
with tf.control_dependencies([update_meta_targets_op, assert_op]):
meta_train_op = tf.add_n(train_op_list[:2],
name='post_update_meta_targets')
if debug_summaries:
train_.gen_debug_batch_summaries(batch)
slim.summaries.add_histogram_summaries(
uvf_agent.get_trainable_critic_vars(), 'critic_vars')
slim.summaries.add_histogram_summaries(
uvf_agent.get_trainable_actor_vars(), 'actor_vars')
train_ops = train_utils.TrainOps(train_op, meta_train_op,
collect_experience_op)
policy_save_path = os.path.join(train_dir, policy_save_dir, 'model.ckpt')
policy_vars = uvf_agent.get_actor_vars() + meta_agent.get_actor_vars() + [
global_step, num_episodes, num_resets
] + list(uvf_agent.context_vars) + list(meta_agent.context_vars) + state_preprocess.get_trainable_vars()
# add critic vars, since some test evaluation depends on them
policy_vars += uvf_agent.get_trainable_critic_vars() + meta_agent.get_trainable_critic_vars()
policy_saver = tf.train.Saver(
policy_vars, max_to_keep=max_policies_to_save, sharded=False)
lowlevel_vars = (uvf_agent.get_actor_vars() +
uvf_agent.get_trainable_critic_vars() +
state_preprocess.get_trainable_vars())
lowlevel_saver = tf.train.Saver(lowlevel_vars)
def policy_save_fn(sess):
policy_saver.save(
sess, policy_save_path, global_step=global_step, write_meta_graph=False)
if save_policy_interval_secs > 0:
tf.logging.info(
'Wait %d secs after save policy.' % save_policy_interval_secs)
time.sleep(save_policy_interval_secs)
train_step_fn = train_utils.TrainStep(
max_number_of_steps=num_episodes_train * max_steps_per_episode + 100,
num_updates_per_observation=num_updates_per_observation,
num_collect_per_update=num_collect_per_update,
num_collect_per_meta_update=num_collect_per_meta_update,
log_every_n_steps=log_every_n_steps,
policy_save_fn=policy_save_fn,
save_policy_every_n_steps=save_policy_every_n_steps,
should_stop_early=should_stop_early).train_step
local_init_op = tf.local_variables_initializer()
init_targets_op = tf.group(uvf_agent.update_targets(1.0),
meta_agent.update_targets(1.0))
def initialize_training_fn(sess):
"""Initialize training function."""
sess.run(local_init_op)
sess.run(init_targets_op)
if load_path:
tf.logging.info('Restoring low-level from %s' % load_path)
lowlevel_saver.restore(sess, load_path)
global_step_value = sess.run(global_step)
assert global_step_value == 0, 'Global step should be zero.'
collect_experience_call = sess.make_callable(
init_collect_experience_op)
for _ in range(initial_steps):
collect_experience_call()
train_saver = tf.train.Saver(max_to_keep=2, sharded=True)
tf.logging.info('train dir: %s', train_dir)
return slim.learning.train(
train_ops,
train_dir,
train_step_fn=train_step_fn,
save_interval_secs=FLAGS.save_interval_secs,
saver=train_saver,
log_every_n_steps=0,
global_step=global_step,
master="",
is_chief=(FLAGS.task == 0),
save_summaries_secs=FLAGS.save_summaries_secs,
init_fn=initialize_training_fn)