def define_performance()

in official/utils/flags/_performance.py [0:0]


def define_performance(num_parallel_calls=False,
                       inter_op=False,
                       intra_op=False,
                       synthetic_data=False,
                       max_train_steps=False,
                       dtype=False,
                       all_reduce_alg=False,
                       num_packs=False,
                       tf_gpu_thread_mode=False,
                       datasets_num_private_threads=False,
                       datasets_num_parallel_batches=False,
                       fp16_implementation=False,
                       loss_scale=False,
                       tf_data_experimental_slack=False,
                       enable_xla=False,
                       training_dataset_cache=False):
  """Register flags for specifying performance tuning arguments.

  Args:
    num_parallel_calls: Create a flag to specify parallelism of data loading.
    inter_op: Create a flag to allow specification of inter op threads.
    intra_op: Create a flag to allow specification of intra op threads.
    synthetic_data: Create a flag to allow the use of synthetic data.
    max_train_steps: Create a flags to allow specification of maximum number of
      training steps
    dtype: Create flags for specifying dtype.
    all_reduce_alg: If set forces a specific algorithm for multi-gpu.
    num_packs: If set provides number of packs for MirroredStrategy's cross
      device ops.
    tf_gpu_thread_mode: gpu_private triggers us of private thread pool.
    datasets_num_private_threads: Number of private threads for datasets.
    datasets_num_parallel_batches: Determines how many batches to process in
      parallel when using map and batch from tf.data.
    fp16_implementation: Create fp16_implementation flag.
    loss_scale: Controls the loss scaling, normally for mixed-precision
      training. Can only be turned on if dtype is also True.
    tf_data_experimental_slack: Determines whether to enable tf.data's
      `experimental_slack` option.
    enable_xla: Determines if XLA (auto clustering) is turned on.
    training_dataset_cache: Whether to cache the training dataset on workers.
      Typically used to improve training performance when training data is in
      remote storage and can fit into worker memory.

  Returns:
    A list of flags for core.py to marks as key flags.
  """

  key_flags = []
  if num_parallel_calls:
    flags.DEFINE_integer(
        name="num_parallel_calls",
        short_name="npc",
        default=multiprocessing.cpu_count(),
        help=help_wrap("The number of records that are  processed in parallel "
                       "during input processing. This can be optimized per "
                       "data set but for generally homogeneous data sets, "
                       "should be approximately the number of available CPU "
                       "cores. (default behavior)"))

  if inter_op:
    flags.DEFINE_integer(
        name="inter_op_parallelism_threads",
        short_name="inter",
        default=0,
        help=help_wrap("Number of inter_op_parallelism_threads to use for CPU. "
                       "See TensorFlow config.proto for details."))

  if intra_op:
    flags.DEFINE_integer(
        name="intra_op_parallelism_threads",
        short_name="intra",
        default=0,
        help=help_wrap("Number of intra_op_parallelism_threads to use for CPU. "
                       "See TensorFlow config.proto for details."))

  if synthetic_data:
    flags.DEFINE_bool(
        name="use_synthetic_data",
        short_name="synth",
        default=False,
        help=help_wrap(
            "If set, use fake data (zeroes) instead of a real dataset. "
            "This mode is useful for performance debugging, as it removes "
            "input processing steps, but will not learn anything."))

  if max_train_steps:
    flags.DEFINE_integer(
        name="max_train_steps",
        short_name="mts",
        default=None,
        help=help_wrap(
            "The model will stop training if the global_step reaches this "
            "value. If not set, training will run until the specified number "
            "of epochs have run as usual. It is generally recommended to set "
            "--train_epochs=1 when using this flag."))

  if dtype:
    flags.DEFINE_enum(
        name="dtype",
        short_name="dt",
        default="fp32",
        enum_values=DTYPE_MAP.keys(),
        help=help_wrap("The TensorFlow datatype used for calculations. "
                       "For 16-bit dtypes, variables and certain ops will "
                       "still be float32 for numeric stability."))

    if loss_scale:
      flags.DEFINE_string(
          name="loss_scale",
          short_name="ls",
          default=None,
          help=help_wrap(
              "The amount to scale the loss by when --dtype=fp16. This can be "
              "an int/float or the string 'dynamic'. Before gradients are "
              "computed, the loss is multiplied by the loss scale, making all "
              "gradients loss_scale times larger. To adjust for this, "
              "gradients are divided by the loss scale before being applied to "
              "variables. This is mathematically equivalent to training "
              "without a loss scale, but the loss scale helps avoid some "
              "intermediate gradients from underflowing to zero. The default "
              "is 'dynamic', which dynamic determines the optimal loss scale "
              "during training."))

      # pylint: disable=unused-variable
      @flags.validator(
          flag_name="loss_scale",
          message="loss_scale should be a positive int/float or the string "
                  "'dynamic'.")
      def _check_loss_scale(loss_scale):
        """Validator to check the loss scale flag is valid."""
        if loss_scale is None:
          return True  # null case is handled in get_loss_scale()

        if loss_scale == "dynamic":
          return True

        try:
          loss_scale = float(loss_scale)
        except ValueError:
          return False

        return loss_scale > 0
      # pylint: enable=unused-variable

    if fp16_implementation:
      flags.DEFINE_enum(
          name="fp16_implementation",
          default="keras",
          enum_values=("keras', 'graph_rewrite"),
          help=help_wrap(
              "When --dtype=fp16, how fp16 should be implemented. This has no "
              "impact on correctness. 'keras' uses the "
              "tf.keras.mixed_precision API. 'graph_rewrite' uses the "
              "tf.compat.v1.mixed_precision."
              "enable_mixed_precision_graph_rewrite API."))

      @flags.multi_flags_validator(
          ["fp16_implementation", "dtype", "loss_scale"])
      def _check_fp16_implementation(flags_dict):
        """Validator to check fp16_implementation flag is valid."""
        if (flags_dict["fp16_implementation"] == "graph_rewrite" and
            flags_dict["dtype"] != "fp16"):
          raise flags.ValidationError("--fp16_implementation should not be "
                                      "specified unless --dtype=fp16")
        return True

  if all_reduce_alg:
    flags.DEFINE_string(
        name="all_reduce_alg",
        short_name="ara",
        default=None,
        help=help_wrap("Defines the algorithm to use for performing all-reduce."
                       "When specified with MirroredStrategy for single "
                       "worker, this controls "
                       "tf.contrib.distribute.AllReduceCrossTowerOps.  When "
                       "specified with MultiWorkerMirroredStrategy, this "
                       "controls "
                       "tf.distribute.experimental.CollectiveCommunication; "
                       "valid options are `ring` and `nccl`."))

  if num_packs:
    flags.DEFINE_integer(
        name="num_packs",
        default=1,
        help=help_wrap("Sets `num_packs` in the cross device ops used in "
                       "MirroredStrategy.  For details, see "
                       "tf.distribute.NcclAllReduce."))

  if tf_gpu_thread_mode:
    flags.DEFINE_string(
        name="tf_gpu_thread_mode",
        short_name="gt_mode",
        default=None,
        help=help_wrap(
            "Whether and how the GPU device uses its own threadpool."))

    flags.DEFINE_integer(
        name="per_gpu_thread_count",
        short_name="pgtc",
        default=0,
        help=help_wrap("The number of threads to use for GPU. Only valid when "
                       "tf_gpu_thread_mode is not global."))

  if datasets_num_private_threads:
    flags.DEFINE_integer(
        name="datasets_num_private_threads",
        default=None,
        help=help_wrap(
            "Number of threads for a private threadpool created for all"
            "datasets computation.."))

  if datasets_num_parallel_batches:
    flags.DEFINE_integer(
        name="datasets_num_parallel_batches",
        default=None,
        help=help_wrap(
            "Determines how many batches to process in parallel when using "
            "map and batch from tf.data."))

  if training_dataset_cache:
    flags.DEFINE_boolean(
        name="training_dataset_cache",
        default=False,
        help=help_wrap(
            "Determines whether to cache the training dataset on workers. "
            "Typically used to improve training performance when training "
            "data is in remote storage and can fit into worker memory."))

  if tf_data_experimental_slack:
    flags.DEFINE_boolean(
        name="tf_data_experimental_slack",
        default=False,
        help=help_wrap(
            "Whether to enable tf.data's `experimental_slack` option."))

  if enable_xla:
    flags.DEFINE_boolean(
        name="enable_xla",
        default=False,
        help="Whether to enable XLA auto jit compilation")

  return key_flags