in research/object_detection/data_decoders/tf_example_decoder.py [0:0]
def __init__(self,
load_instance_masks=False,
instance_mask_type=input_reader_pb2.NUMERICAL_MASKS,
label_map_proto_file=None,
use_display_name=False,
dct_method='',
num_keypoints=0,
num_additional_channels=0,
load_multiclass_scores=False,
load_context_features=False,
expand_hierarchy_labels=False,
load_dense_pose=False,
load_track_id=False,
load_keypoint_depth_features=False,
use_keypoint_label_map=False):
"""Constructor sets keys_to_features and items_to_handlers.
Args:
load_instance_masks: whether or not to load and handle instance masks.
instance_mask_type: type of instance masks. Options are provided in
input_reader.proto. This is only used if `load_instance_masks` is True.
label_map_proto_file: a file path to a
object_detection.protos.StringIntLabelMap proto. If provided, then the
mapped IDs of 'image/object/class/text' will take precedence over the
existing 'image/object/class/label' ID. Also, if provided, it is
assumed that 'image/object/class/text' will be in the data.
use_display_name: whether or not to use the `display_name` for label
mapping (instead of `name`). Only used if label_map_proto_file is
provided.
dct_method: An optional string. Defaults to None. It only takes
effect when image format is jpeg, used to specify a hint about the
algorithm used for jpeg decompression. Currently valid values
are ['INTEGER_FAST', 'INTEGER_ACCURATE']. The hint may be ignored, for
example, the jpeg library does not have that specific option.
num_keypoints: the number of keypoints per object.
num_additional_channels: how many additional channels to use.
load_multiclass_scores: Whether to load multiclass scores associated with
boxes.
load_context_features: Whether to load information from context_features,
to provide additional context to a detection model for training and/or
inference.
expand_hierarchy_labels: Expands the object and image labels taking into
account the provided hierarchy in the label_map_proto_file. For positive
classes, the labels are extended to ancestor. For negative classes,
the labels are expanded to descendants.
load_dense_pose: Whether to load DensePose annotations.
load_track_id: Whether to load tracking annotations.
load_keypoint_depth_features: Whether to load the keypoint depth features
including keypoint relative depths and weights. If this field is set to
True but no keypoint depth features are in the input tf.Example, then
default values will be populated.
use_keypoint_label_map: If set to True, the 'image/object/keypoint/text'
field will be used to map the keypoint coordinates (using the label
map defined in label_map_proto_file) instead of assuming the ordering
in the tf.Example feature. This is useful when training with multiple
datasets while each of them contains different subset of keypoint
annotations.
Raises:
ValueError: If `instance_mask_type` option is not one of
input_reader_pb2.DEFAULT, input_reader_pb2.NUMERICAL, or
input_reader_pb2.PNG_MASKS.
ValueError: If `expand_labels_hierarchy` is True, but the
`label_map_proto_file` is not provided.
"""
# TODO(rathodv): delete unused `use_display_name` argument once we change
# other decoders to handle label maps similarly.
del use_display_name
self.keys_to_features = {
'image/encoded':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/format':
tf.FixedLenFeature((), tf.string, default_value='jpeg'),
'image/filename':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/key/sha256':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/source_id':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/height':
tf.FixedLenFeature((), tf.int64, default_value=1),
'image/width':
tf.FixedLenFeature((), tf.int64, default_value=1),
# Image-level labels.
'image/class/text':
tf.VarLenFeature(tf.string),
'image/class/label':
tf.VarLenFeature(tf.int64),
'image/neg_category_ids':
tf.VarLenFeature(tf.int64),
'image/not_exhaustive_category_ids':
tf.VarLenFeature(tf.int64),
'image/class/confidence':
tf.VarLenFeature(tf.float32),
# Object boxes and classes.
'image/object/bbox/xmin':
tf.VarLenFeature(tf.float32),
'image/object/bbox/xmax':
tf.VarLenFeature(tf.float32),
'image/object/bbox/ymin':
tf.VarLenFeature(tf.float32),
'image/object/bbox/ymax':
tf.VarLenFeature(tf.float32),
'image/object/class/label':
tf.VarLenFeature(tf.int64),
'image/object/class/text':
tf.VarLenFeature(tf.string),
'image/object/area':
tf.VarLenFeature(tf.float32),
'image/object/is_crowd':
tf.VarLenFeature(tf.int64),
'image/object/difficult':
tf.VarLenFeature(tf.int64),
'image/object/group_of':
tf.VarLenFeature(tf.int64),
'image/object/weight':
tf.VarLenFeature(tf.float32),
}
# We are checking `dct_method` instead of passing it directly in order to
# ensure TF version 1.6 compatibility.
if dct_method:
image = slim_example_decoder.Image(
image_key='image/encoded',
format_key='image/format',
channels=3,
dct_method=dct_method)
additional_channel_image = slim_example_decoder.Image(
image_key='image/additional_channels/encoded',
format_key='image/format',
channels=1,
repeated=True,
dct_method=dct_method)
else:
image = slim_example_decoder.Image(
image_key='image/encoded', format_key='image/format', channels=3)
additional_channel_image = slim_example_decoder.Image(
image_key='image/additional_channels/encoded',
format_key='image/format',
channels=1,
repeated=True)
self.items_to_handlers = {
fields.InputDataFields.image:
image,
fields.InputDataFields.source_id: (
slim_example_decoder.Tensor('image/source_id')),
fields.InputDataFields.key: (
slim_example_decoder.Tensor('image/key/sha256')),
fields.InputDataFields.filename: (
slim_example_decoder.Tensor('image/filename')),
# Image-level labels.
fields.InputDataFields.groundtruth_image_confidences: (
slim_example_decoder.Tensor('image/class/confidence')),
fields.InputDataFields.groundtruth_verified_neg_classes: (
slim_example_decoder.Tensor('image/neg_category_ids')),
fields.InputDataFields.groundtruth_not_exhaustive_classes: (
slim_example_decoder.Tensor('image/not_exhaustive_category_ids')),
# Object boxes and classes.
fields.InputDataFields.groundtruth_boxes: (
slim_example_decoder.BoundingBox(['ymin', 'xmin', 'ymax', 'xmax'],
'image/object/bbox/')),
fields.InputDataFields.groundtruth_area:
slim_example_decoder.Tensor('image/object/area'),
fields.InputDataFields.groundtruth_is_crowd: (
slim_example_decoder.Tensor('image/object/is_crowd')),
fields.InputDataFields.groundtruth_difficult: (
slim_example_decoder.Tensor('image/object/difficult')),
fields.InputDataFields.groundtruth_group_of: (
slim_example_decoder.Tensor('image/object/group_of')),
fields.InputDataFields.groundtruth_weights: (
slim_example_decoder.Tensor('image/object/weight')),
}
self._keypoint_label_map = None
if use_keypoint_label_map:
assert label_map_proto_file is not None
self._keypoint_label_map = label_map_util.get_keypoint_label_map_dict(
label_map_proto_file)
# We use a default_value of -1, but we expect all labels to be
# contained in the label map.
try:
# Dynamically try to load the tf v2 lookup, falling back to contrib
lookup = tf.compat.v2.lookup
hash_table_class = tf.compat.v2.lookup.StaticHashTable
except AttributeError:
lookup = contrib_lookup
hash_table_class = contrib_lookup.HashTable
self._kpts_name_to_id_table = hash_table_class(
initializer=lookup.KeyValueTensorInitializer(
keys=tf.constant(list(self._keypoint_label_map.keys())),
values=tf.constant(
list(self._keypoint_label_map.values()), dtype=tf.int64)),
default_value=-1)
self.keys_to_features[_KEYPOINT_TEXT_FIELD] = tf.VarLenFeature(
tf.string)
self.items_to_handlers[_KEYPOINT_TEXT_FIELD] = (
slim_example_decoder.ItemHandlerCallback(
[_KEYPOINT_TEXT_FIELD], self._keypoint_text_handle))
if load_multiclass_scores:
self.keys_to_features[
'image/object/class/multiclass_scores'] = tf.VarLenFeature(tf.float32)
self.items_to_handlers[fields.InputDataFields.multiclass_scores] = (
slim_example_decoder.Tensor('image/object/class/multiclass_scores'))
if load_context_features:
self.keys_to_features[
'image/context_features'] = tf.VarLenFeature(tf.float32)
self.items_to_handlers[fields.InputDataFields.context_features] = (
slim_example_decoder.ItemHandlerCallback(
['image/context_features', 'image/context_feature_length'],
self._reshape_context_features))
self.keys_to_features[
'image/context_feature_length'] = tf.FixedLenFeature((), tf.int64)
self.items_to_handlers[fields.InputDataFields.context_feature_length] = (
slim_example_decoder.Tensor('image/context_feature_length'))
if num_additional_channels > 0:
self.keys_to_features[
'image/additional_channels/encoded'] = tf.FixedLenFeature(
(num_additional_channels,), tf.string)
self.items_to_handlers[
fields.InputDataFields.
image_additional_channels] = additional_channel_image
self._num_keypoints = num_keypoints
if num_keypoints > 0:
self.keys_to_features['image/object/keypoint/x'] = (
tf.VarLenFeature(tf.float32))
self.keys_to_features['image/object/keypoint/y'] = (
tf.VarLenFeature(tf.float32))
self.keys_to_features['image/object/keypoint/visibility'] = (
tf.VarLenFeature(tf.int64))
self.items_to_handlers[fields.InputDataFields.groundtruth_keypoints] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/keypoint/y', 'image/object/keypoint/x'],
self._reshape_keypoints))
kpt_vis_field = fields.InputDataFields.groundtruth_keypoint_visibilities
self.items_to_handlers[kpt_vis_field] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/keypoint/x', 'image/object/keypoint/visibility'],
self._reshape_keypoint_visibilities))
if load_keypoint_depth_features:
self.keys_to_features['image/object/keypoint/z'] = (
tf.VarLenFeature(tf.float32))
self.keys_to_features['image/object/keypoint/z/weights'] = (
tf.VarLenFeature(tf.float32))
self.items_to_handlers[
fields.InputDataFields.groundtruth_keypoint_depths] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/keypoint/x', 'image/object/keypoint/z'],
self._reshape_keypoint_depths))
self.items_to_handlers[
fields.InputDataFields.groundtruth_keypoint_depth_weights] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/keypoint/x',
'image/object/keypoint/z/weights'],
self._reshape_keypoint_depth_weights))
if load_instance_masks:
if instance_mask_type in (input_reader_pb2.DEFAULT,
input_reader_pb2.NUMERICAL_MASKS):
self.keys_to_features['image/object/mask'] = (
tf.VarLenFeature(tf.float32))
self.items_to_handlers[
fields.InputDataFields.groundtruth_instance_masks] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/mask', 'image/height', 'image/width'],
self._reshape_instance_masks))
elif instance_mask_type == input_reader_pb2.PNG_MASKS:
self.keys_to_features['image/object/mask'] = tf.VarLenFeature(tf.string)
self.items_to_handlers[
fields.InputDataFields.groundtruth_instance_masks] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/mask', 'image/height', 'image/width'],
self._decode_png_instance_masks))
else:
raise ValueError('Did not recognize the `instance_mask_type` option.')
self.keys_to_features['image/object/mask/weight'] = (
tf.VarLenFeature(tf.float32))
self.items_to_handlers[
fields.InputDataFields.groundtruth_instance_mask_weights] = (
slim_example_decoder.Tensor('image/object/mask/weight'))
if load_dense_pose:
self.keys_to_features['image/object/densepose/num'] = (
tf.VarLenFeature(tf.int64))
self.keys_to_features['image/object/densepose/part_index'] = (
tf.VarLenFeature(tf.int64))
self.keys_to_features['image/object/densepose/x'] = (
tf.VarLenFeature(tf.float32))
self.keys_to_features['image/object/densepose/y'] = (
tf.VarLenFeature(tf.float32))
self.keys_to_features['image/object/densepose/u'] = (
tf.VarLenFeature(tf.float32))
self.keys_to_features['image/object/densepose/v'] = (
tf.VarLenFeature(tf.float32))
self.items_to_handlers[
fields.InputDataFields.groundtruth_dp_num_points] = (
slim_example_decoder.Tensor('image/object/densepose/num'))
self.items_to_handlers[fields.InputDataFields.groundtruth_dp_part_ids] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/densepose/part_index',
'image/object/densepose/num'], self._dense_pose_part_indices))
self.items_to_handlers[
fields.InputDataFields.groundtruth_dp_surface_coords] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/densepose/x', 'image/object/densepose/y',
'image/object/densepose/u', 'image/object/densepose/v',
'image/object/densepose/num'],
self._dense_pose_surface_coordinates))
if load_track_id:
self.keys_to_features['image/object/track/label'] = (
tf.VarLenFeature(tf.int64))
self.items_to_handlers[
fields.InputDataFields.groundtruth_track_ids] = (
slim_example_decoder.Tensor('image/object/track/label'))
if label_map_proto_file:
# If the label_map_proto is provided, try to use it in conjunction with
# the class text, and fall back to a materialized ID.
label_handler = slim_example_decoder.BackupHandler(
_ClassTensorHandler(
'image/object/class/text', label_map_proto_file,
default_value=''),
slim_example_decoder.Tensor('image/object/class/label'))
image_label_handler = slim_example_decoder.BackupHandler(
_ClassTensorHandler(
fields.TfExampleFields.image_class_text,
label_map_proto_file,
default_value=''),
slim_example_decoder.Tensor(fields.TfExampleFields.image_class_label))
else:
label_handler = slim_example_decoder.Tensor('image/object/class/label')
image_label_handler = slim_example_decoder.Tensor(
fields.TfExampleFields.image_class_label)
self.items_to_handlers[
fields.InputDataFields.groundtruth_classes] = label_handler
self.items_to_handlers[
fields.InputDataFields.groundtruth_image_classes] = image_label_handler
self._expand_hierarchy_labels = expand_hierarchy_labels
self._ancestors_lut = None
self._descendants_lut = None
if expand_hierarchy_labels:
if label_map_proto_file:
ancestors_lut, descendants_lut = (
label_map_util.get_label_map_hierarchy_lut(label_map_proto_file,
True))
self._ancestors_lut = tf.constant(ancestors_lut, dtype=tf.int64)
self._descendants_lut = tf.constant(descendants_lut, dtype=tf.int64)
else:
raise ValueError('In order to expand labels, the label_map_proto_file '
'has to be provided.')